scholarly journals The Estimation of Zinc in Sea Water using Sodium Diethyldithiocarbamate

Author(s):  
W. R. G. Atkins

Sea water contains very little zinc. Values from 0–73 mg. per cubic metre have been cited in Physics of the Earth, V, 180, Washington, 1932. According to Orton it is less than 0–1 parts per million in the English Channel. Dieulafait found 2 nig. and Bodansky 7–3, erroneously quoted as 73 above. The method described here permits of the detection of as little as 8 mg. per m3 using 200 ml. of distilled water in a Hehner tube, the delicacy of the reaction being much greater than that of any other for zinc. Sea water from the English Channel gives no turbidity and so is unlikely to contain as much as 8 mg. per m3. The method is brought forward on account of its usefulness in detecting and estimating zinc in sea water contaminated by contact with metallic surfaces. Its use in fresh water has already been described (Analyst, 1935, 60, p. 400, No. 711, June), and to this paper reference may be made for some possible sources of interference and for the origin of the reagent.

1963 ◽  
Vol 40 (1) ◽  
pp. 187-193
Author(s):  
M. J. WELLS

1. A method of teaching Octopus chemotactile discriminations is described. 2. The animals can be shown to be capable of distinguishing by touch between porous objects soaked in plain sea water and sea water with hydrochloric acid, sucrose or quinine sulphate added. 3. They can detect these substances in concentrations at least 100 times as dilute as the human tongue is capable of detecting them in distilled water. 4. They can be trained to distinguish between equimolar (0.2 mM) solutions of hydrochloric acid, sucrose and quinine. 5. They can also be trained to distinguish between sea water and fresh water or half-strength sea water or sea water with twice the usual quantity of salt. 6. The function of the ‘olfactory organ’ is discussed. 7. Chemotactile learning is discussed in relation to the means by which Octopus finds its way about the territory around its ‘home’


1931 ◽  
Vol 8 (1) ◽  
pp. 82-94
Author(s):  
C. F. A. PANTIN

1. The rate of loss of salts by the estuarine worm, Gunda ulvae, on transference from sea water to various dilute solutions has been studied by measurement of the electric conductivity of the solutions. 2. Salts are lost by the worms from the moment of immersion in dilute solutions. Conditions affecting the rate of loss of salts are discussed. 3. The relation between the amount of salts lost and the total electrolyte content of the worm was determined. It is shown that the worms only lose 25 per cent. of their salts during the time that they imbibe a volume of water from the dilute solution equal to their initial volume. 4. The limiting internal salt concentration of worms surviving in waters containing calcium is about 6-10 per cent. of the normal concentration in sea water. No such limiting value can be found for distilled water, since salts are lost continuously till cytolysis occurs. The significance of the limiting concentration is discussed. 5. The effect of osmotic pressure, pH, dilute solutions of NaCl, NaHCO3, glycerol, CaCl2 and CaCO3 are studied. The presence of calcium reduces the rate of loss of salts. Other factors do not seem to influence this rate. 6. The relation of calcium to the maintenance of normal permeability to water and salts in the worm, and the significance of this to the problem of migration into fresh water are discussed.


2018 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
La Baride ◽  
Yustinus Edward K. Maturbongs

The general objective of this research is to generate destilator prototype that utilize heat exhaust gas from engine fishing boats, while specific objective of this research is to generate usefull technology, to generate fresh water for the needs on fishing boats, to increase the productivity of fisherman through the efficiency of sailling time while processing sea water to be fresh water on fishing boat. This research uses experimental method. Destilator was designed as destillation tool of sea water with utilizing heat from exhaust gases of diesel machine. The result of the research for three hours with the volume of distilled water 25 liters were obtained; on machine circle 2200 rpm fresh water generated is 4465 ml with the temperature of sea water 89 oc effectiveness of destilator 66.06 % with heat loses 0.1891kj/s; on machine circle 2000 rpm of fresh water generated is 3700 ml with the temperature of sea water 87 oc, effectiveness of destilator 65.79 % with heat loses 0.068 kj/s; on machine circle 1800 rpm of fresh water generated is 2940 ml with the temperature of sea water 83 oc effectiveness of of destilator 64.36 % with heat loses 0.0313kj/s.


Author(s):  
Olga Mashukova ◽  
Olga Mashukova ◽  
Yuriy Tokarev ◽  
Yuriy Tokarev ◽  
Nadejda Kopytina ◽  
...  

We studied for the first time luminescence characteristics of the some micromycetes, isolated from the bottom sediments of the Black sea from the 27 m depth. Luminescence parameters were registered at laboratory complex “Svet” using mechanical and chemical stimulations. Fungi cultures of genera Acremonium, Aspergillus, Penicillium were isolated on ChDA medium which served as control. Culture of Penicillium commune gave no light emission with any kind of stimulation. Culture of Acremonium sp. has shown luminescence in the blue – green field of spectrum. Using chemical stimulation by fresh water we registered signals with luminescence energy (to 3.24 ± 0.11)•108 quantum•cm2 and duration up to 4.42 s, which 3 times exceeded analogous magnitudes in a group, stimulated by sea water (p < 0.05). Under chemical stimulation by ethyl alcohol fungi culture luminescence was not observed. Culture of Aspergillus fumigatus possessed the most expressed properties of luminescence. Stimulation by fresh water culture emission with energy of (3.35 ± 0.11)•108 quantum•cm2 and duration up to 4.96 s. Action of ethyl alcohol to culture also stimulated signals, but intensity of light emission was 3–4 times lower than under mechanical stimulation. For sure the given studies will permit not only to evaluate contribution of marine fungi into general bioluminescence of the sea, but as well to determine places of accumulation of opportunistic species in the sea.


1992 ◽  
Vol 25 (11) ◽  
pp. 117-124 ◽  
Author(s):  
N. Watanabe ◽  
S. Sakai ◽  
H. Takatsuki

Examination of individual degradation paths (biodegradation and photolysis) of butyltin compounds (especially tributyltin: TBT) in natural waters was performed. Biodegradation of TBT and dibutyltin (DBT) in an unfiltered sea water in summer is rather fast; their half life is about a week. But pretreatment with glass fiber filter makes the half life of TBT much longer (about 80 days). Photolysis of TBT in sea water by sun light is rapid (half life is about 0.5 days), and faster than in distilled water or in fresh water. Degradation rates of each process for TBT are calculated in various conditions of sea water, and contribution rates are compared. Biodegradation will be the main degradation process in an “SS-rich” area such as a marina, but photolysis will exceed that in a “clean” area. Over all half lives of TBT in sea water vary from 6 days to 127 days considering seasons and presence of SS.


2018 ◽  
Vol 3 (2) ◽  
pp. 38-47
Author(s):  
Muhammad Abdul Azis ◽  
Nuryake Fajaryati

This research aims to create a Reosquido desalination tool for evaporation methods using a microcontroller. This tool can control the temperature to speed up the evaporation process in producing fresh water. The method applied to Reosquido desalination uses Evaporation. The first process before evaporation is the detection of temperature in sea water that will be heated using an element heater. The second process of temperature measurement is to turn off and turn on the Arduino Uno controlled heater, when the temperature is less than 80 ° then the heater is on. The third process is evaporation during temperatures between 80 ° to 100 °, evaporation water sticks to the glass roof which is designed by pyramid. Evaporated water that flows into the reservoir is detected by its solubility TDS value. The fourth process is heater off when the temperature is more than 100 °. Based on the results of the testing, the desalination process using a microcontroller controlled heater can speed up the time up to 55% of the previous desalination process tool, namely manual desalination prsoes without using the heater element controlled by the temperature and controlled by a microcontroller which takes 9 hours. Produces fresh water as much as 30ml from 3000ml of sea water, so that it can be compared to 1: 100.


2017 ◽  
Vol 130 (1) ◽  
pp. 479-484 ◽  
Author(s):  
M. M. Mato ◽  
L. M. Casás ◽  
J. L. Legido ◽  
C. Gómez ◽  
L. Mourelle ◽  
...  

Recent work has determined the depth of the Mohorovičić discontinuity at sea and has made it likely that peridotite xenoliths in basaltic volcanic rocks are samples of material from below the discontinuity. It is now possible to produce a hypothetical section showing the transition from a continent to an ocean. This section is consistent with both the seismic and gravity results. The possible reactions of the crust to changes in the total volume of sea water are dis­cussed. It seems possible that the oceans were shallower and the crust thinner in the Archean than they are now. If this were so, some features of the oldest rocks of Canada and Southern Rhodesia could be explained. Three processes are described that might lead to the formation of oceanic ridges; one of these involves tension, one compression and the other quiet tectonic conditions. It is likely that not all ridges are formed in the same way. It is possible that serpentization of olivine by water rising from the interior of the earth plays an important part in producing changes of level in the ocean floor and anomalies in heat flow. Finally, a method of reducing gravity observations at sea is discussed.


2014 ◽  
Vol 592-594 ◽  
pp. 2409-2415 ◽  
Author(s):  
S. Naga Sarada ◽  
Banoth Hima Bindu ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

In recent years with the exacerbation of energy shortage, water crisis increases around the world. With the continuous increase in the level of greenhouse gas emissions, the use of various sources of renewable energy is increasingly becoming important for sustainable development. Due to the rising oil price and environmental regulations, the demand of utilizing alternative power sources increased dramatically. Alternative energy and its applications have been heavily studied for the last decade. Energy and water are essential for mankind that influences the socioeconomic development of any nation. Pure water resources become more and more scarce every day as rivers, lakes wells and even seawater pollution rapidly increases. Solar energy is one promising solution to secure power and potable water to future generation. The process of distillation can be used to obtain fresh water from salty, brackish or contaminated water. Water is available in different forms such as sea water, underground water, surface water and atmospheric water. Clean water is essential for good health. The search for sustainable energy resources has emerged as one of the most significant and universal concerns in the 21st century. Solar energy conversion offers a cost effective alternative to our traditional usages. Solar energy is a promising candidate in many applications. Among the alternative energy sources used for electricity production, wind and solar energy systems have become more attractive in recent years. For areas where electricity was not available, stand alone wind and solar systems have been increasingly used. The shortage of drinking water in many countries throughout the world is a serious problem. Humankind has depended for ages on river, sea water and underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. To resolve this crisis, different methods of solar desalination have been used in many countries. Distillation is a well known thermal process for water purification, most importantly, water desalination. Most of the conventional water distillation processes are highly energy consuming and require fossil fuels as well as electric power for their operation. Single basin solar still is a popular solar device used for converting available brackish or waste water into potable water. Because of its lower productivity, it is not popularly used. Numbers of works are under taken to improve the productivity and efficiency of the solar still. There are large numbers of PCMs that melt and solidify at wide range of temperatures, making them attractive in a number of applications. PCMs have been widely used in latent heat thermal storage systems for heat pumps, solar engineering and spacecraft thermal control applications. The use of PCMs for heating and cooling applications for buildings has been investigated within the past decade. The experimental results computed in the field of water distillation process using solar energy in the presence of energy storage materials sodium sulphate and sodium acetate are discussed in this paper. Keywords: solar energy, saline water, distillation, phase change material.


Sign in / Sign up

Export Citation Format

Share Document