Field and laboratory measurement of heart rate in a tropical limpet, Cellana grata

Author(s):  
Guido Chelazzi ◽  
Gray A. Williams ◽  
Dave R. Gray

Heart rate of the tropical limpet Cellana grata was monitored on the shore (Cape d'Aguilar, Hong Kong) and in the laboratory using a non-invasive technique. Individual field measurements performed on inactive limpets, in a variety of thermal conditions during a diurnal low tide, showed a general increase in heart rate with increasing body temperature. This relationship was not always evident when monitoring individual responses over a diurnal low tide period, since under some circumstances, heart rate of individuals decreased with increasing the temperature of the substrate and foot. A factorial laboratory experiment showed that heart rate was faster at higher temperatures but slower in larger animals. The combined evaluation of field and laboratory data suggests that limpets in some habitats may be able to regulate their metabolic rate when resting on hot rock substrates.

2011 ◽  
Vol 2-3 ◽  
pp. 595-598
Author(s):  
Fang Fang Jiang ◽  
Xu Wang ◽  
Dan Yang ◽  
Yu Hao

Ballistocardiogram signal (BCG) is a non-invasive technique for the assessment of the cardiac function. It consists mainly of heart movement and the movement of blood in aorta, arteries, and periphery, which can be used to real-time monitor the heart rate and respiration frequency at home. In our laboratory, a sitting BCG detection chair has been designed successfully, and the acquisition and analysis system based on virtual instruments is proposed in this paper. MATLAB7.0 and LabVIEW8.5 were used to simulate the operational environment, and the results show high efficiency and accuracy in displaying waveform and spectrum, extracting main characteristics of heart rate and respiratory frequency, and alerting when abnormal heart-rate occurs.


2019 ◽  
Vol 26 (4) ◽  
pp. 147
Author(s):  
Aryani Sismin Satyaningtijas ◽  
Agik Suprayogi ◽  
Ardiansyah Nurdin ◽  
Huda S. Darusman

This study aims to obtain the physiological value of dugongs that live in natural habitats (in-situ) as protected wildlife, namely on the coast of Lingayan Island, Toli-Toli Regency. Wild dugongs caught on the beach were put into a net cage. After 14 days of living in a beach cage, measurements of heart rate, respiration, and body temperature were measured using non-invasive methods. This study showed that the value of heart rate, respiration, and body temperature were measured (80.00±17.32) beats/minutes, (17.33±6.80) inspiration/minute, and (32.75±0.07)°C. This physiological value is higher when compared to dugongs that live in captivity, this is likely due to the process of homeostasis through physiological adaptation mechanisms. The physiological value of the dugong is very important for the advancement of dugong animal health science and technology. Besides this finding can be a medical reference that is very useful for veterinarians in the diagnostic and therapeutic process.


2020 ◽  
Author(s):  
Azure D. Grant ◽  
Mark Newman ◽  
Lance J. Kriegsfeld

AbstractThe human menstrual cycle is characterized by predictable patterns of physiological change across timescales, yet non-invasive anticipation of key events is not yet possible at individual resolution. Although patterns of reproductive hormones across the menstrual cycle have been well characterized, monitoring these measures repeatedly to anticipate the preovulatory luteinizing hormone (LH) surge is not practical for fertility awareness. In the present study, we explored whether non-invasive and high frequency measures of distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures across the menstrual cycle. Cycles were examined from both pre- (n=45 cycles) and perimenopausal (n=10 cycles) women using days of supra-surge threshold LH and dates of menstruation for all cycles. For a subset of cycles, urinary estradiol and progesterone metabolites were measured daily around the time of the LH surge. Wavelet analysis revealed a consistent inflection point of ultradian rhythm (2-5 h) power of DBT and HRV that enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. In contrast, the power of ultradian rhythms in heart rate, circadian rhythms in body temperature, and metrics of sleep duration and sleep timing were not predictive of the LH surge. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge and may aid in fertility awareness.Key PointsUltradian (2-5 h) rhythm power of distal body temperature and heart rate variability (RMSSD) exhibits a stereotyped inflection point and peak in the days leading up to the LH surge in premenopausal women.Circadian rhythms of distal body temperature and single time-point/day metrics do not permit anticipation of the LH surge.Measurement of continuous metabolic and autonomic outputs, enabling assessment of ultradian rhythms, may be of value to the fertility awareness method.


Animals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1094 ◽  
Author(s):  
Edward Narayan ◽  
Annabella Perakis ◽  
Will Meikle

Non-invasive techniques can be applied for monitoring the physiology and behaviour of wildlife in Zoos to improve management and welfare. Thermal imaging technology has been used as a non-invasive technique to measure the body temperature of various domesticated and wildlife species. In this study, we evaluated the application of thermal imaging to measure the body temperature of koalas (Phascolarctos cinereus) in a Zoo environment. The aim of the study was to determine the body feature most suitable for recording a koala’s body temperature (using coefficient of variation scores). We used a FLIR530TM IR thermal imaging camera to take images of each individual koala across three days in autumn 2018 at the Wildlife Sydney Zoo, Australia. Our results demonstrated that koalas had more than one reliable body feature for recording body temperature using the thermal imaging tool—the most reliable features were eyes and abdomen. This study provides first reported application of thermal imaging on an Australian native species in a Zoo and demonstrates its potential applicability as a humane/non-invasive technique for assessing the body temperature as an index of stress.


2020 ◽  
Vol 48 (3) ◽  
pp. 480-487
Author(s):  
Delezia Shivani Singh ◽  
Mary Alkins-Koo ◽  
Luke Victor Rostant ◽  
Azad Mohammed

Heart rate is a key physiological feature that can be used to assess the response of organisms to changing environmental conditions in aquatic habitats, such as acute fluctuations in oxygen levels and hypoxic conditions. This experiment, therefore, investigated cardiac responses in a freshwater brachyuran species, Poppiana dentata, exposed to low oxygen levels. Heart rate was derived from beats per minute (bpm) signals (n = 576) using an infrared, non-invasive technique over a 96 h period, under different dissolved oxygen (DO) conditions. These involved three regimes: normoxic (6.8 ± 0.1 mg L-1), decreasing DO to hypoxic levels (6.2 to 1.7 mg L-1), and recovery with normoxic levels (6.3 ± 0.1 mg L-1). Changes in heart rates among the three regimes were significant (P < 0.05); reflecting the shift in heart rate during different conditions of oxygen availability, normoxic (59 to 61 bpm), declining DO (54 to 62 bpm) and recovery DO (53 to 64 bpm). Additionally, the normal rhythmicity of heart rates under the normoxic condition was not maintained throughout most of the declining DO and recovery periods. P. dentata has demonstrated cardiac compensations in heart rate during low oxygen levels, providing insight into the species cardiac physiology.


1997 ◽  
Vol 36 (04/05) ◽  
pp. 306-310 ◽  
Author(s):  
T. Nakano ◽  
E. Koyama ◽  
T. Imai ◽  
H. Hagiwara

Abstract.In field measurements, monitoring of core body temperature is influenced by physical activities; therefore, the estimation of circadian rhythm from the data may not be exact. The purpose of this study is to design a core body temperature filter in order to reduce artifacts induced by physical activities using simultaneously recorded physiological data such as heart rate data.The effects of physical activities on core body temperature and heart rate are assessed through three experiments. Based on the above knowledge, a core body temperature filter was designed. The filter removes part of rectal temperature data as artifact when heart rate rises above a predetermined threshold. As a result, most of the spike-like noise was removed and the filtered temperature data showed sinusoidal variation more than the unfiltered data. The mesor of the estimated rhythm significantly decreased. This filtering method can provide more precise information about circadian rhythm, especially in field measurements.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 844
Author(s):  
Malika Jallouli ◽  
Sabrine Arfaoui ◽  
Anouar Ben Ben Mabrouk ◽  
Carlo Cattani

Analysis of the fetal heart rate during pregnancy is essential for monitoring the proper development of the fetus. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The challenge lies in the extraction of the fetal ECG from the mother ECG during pregnancy. This approach has the advantage of being a reliable and non-invasive technique. In the present paper, a wavelet/multiwavelet method is proposed to perfectly extract the fetal ECG parameters from the abdominal mother ECG. In a first step, due to the wavelet/mutiwavelet processing, a denoising procedure is applied to separate the noised parts from the denoised ones. The denoised signal is assumed to be a mixture of both the MECG and the FECG. One of the well-known measures of accuracy in information processing is the concept of entropy. In the present work, a wavelet/multiwavelet Shannon-type entropy is constructed and applied to evaluate the order/disorder of the extracted FECG signal. The experimental results apply to a recent class of Clifford wavelets constructed in Arfaoui, et al. J. Math. Imaging Vis. 2020, 62, 73–97, and Arfaoui, et al.Acta Appl. Math.2020, 170, 1–35.. Additionally, classical Haar–Faber–Schauder wavelets are applied for the purpose of comparison. Two main well-known databases have been applied, the DAISY database and the CinC Challenge 2013 database. The achieved accuracy over the test databases resulted in Se=100%, PPV=100% for FECG extraction and peak detection.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Azure D. Grant ◽  
Mark Newman ◽  
Lance J. Kriegsfeld

AbstractThe menstrual cycle is characterized by predictable patterns of physiological change across timescales. Although patterns of reproductive hormones across the menstrual cycle, particularly ultradian rhythms, are well described, monitoring these measures repeatedly to predict the preovulatory luteinizing hormone (LH) surge is not practical. In the present study, we explored whether non-invasive measures coupled to the reproductive system: high frequency distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing, could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures in 45 premenopausal and 10 perimenopausal cycles alongside dates of supra-surge threshold LH and menstruation. Additionally, urinary estradiol and progesterone metabolites were measured daily surrounding the LH surge in 20 cycles. Wavelet analysis revealed a consistent pattern of DBT and HRV ultradian rhythm (2–5 h) power that uniquely enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge, suggesting that automated ultradian rhythm monitoring may provide a novel and convenient method for non-invasive fertility assessment.


Sign in / Sign up

Export Citation Format

Share Document