scholarly journals Physiological Value of Heart Rate, Respiration and Rectal Temperature of Wild-Captive Dugong (Dugong dugon)–A Case Study in Lingayan Island

2019 ◽  
Vol 26 (4) ◽  
pp. 147
Author(s):  
Aryani Sismin Satyaningtijas ◽  
Agik Suprayogi ◽  
Ardiansyah Nurdin ◽  
Huda S. Darusman

This study aims to obtain the physiological value of dugongs that live in natural habitats (in-situ) as protected wildlife, namely on the coast of Lingayan Island, Toli-Toli Regency. Wild dugongs caught on the beach were put into a net cage. After 14 days of living in a beach cage, measurements of heart rate, respiration, and body temperature were measured using non-invasive methods. This study showed that the value of heart rate, respiration, and body temperature were measured (80.00±17.32) beats/minutes, (17.33±6.80) inspiration/minute, and (32.75±0.07)°C. This physiological value is higher when compared to dugongs that live in captivity, this is likely due to the process of homeostasis through physiological adaptation mechanisms. The physiological value of the dugong is very important for the advancement of dugong animal health science and technology. Besides this finding can be a medical reference that is very useful for veterinarians in the diagnostic and therapeutic process.

2020 ◽  
Author(s):  
Azure D. Grant ◽  
Mark Newman ◽  
Lance J. Kriegsfeld

AbstractThe human menstrual cycle is characterized by predictable patterns of physiological change across timescales, yet non-invasive anticipation of key events is not yet possible at individual resolution. Although patterns of reproductive hormones across the menstrual cycle have been well characterized, monitoring these measures repeatedly to anticipate the preovulatory luteinizing hormone (LH) surge is not practical for fertility awareness. In the present study, we explored whether non-invasive and high frequency measures of distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures across the menstrual cycle. Cycles were examined from both pre- (n=45 cycles) and perimenopausal (n=10 cycles) women using days of supra-surge threshold LH and dates of menstruation for all cycles. For a subset of cycles, urinary estradiol and progesterone metabolites were measured daily around the time of the LH surge. Wavelet analysis revealed a consistent inflection point of ultradian rhythm (2-5 h) power of DBT and HRV that enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. In contrast, the power of ultradian rhythms in heart rate, circadian rhythms in body temperature, and metrics of sleep duration and sleep timing were not predictive of the LH surge. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge and may aid in fertility awareness.Key PointsUltradian (2-5 h) rhythm power of distal body temperature and heart rate variability (RMSSD) exhibits a stereotyped inflection point and peak in the days leading up to the LH surge in premenopausal women.Circadian rhythms of distal body temperature and single time-point/day metrics do not permit anticipation of the LH surge.Measurement of continuous metabolic and autonomic outputs, enabling assessment of ultradian rhythms, may be of value to the fertility awareness method.


Author(s):  
Guido Chelazzi ◽  
Gray A. Williams ◽  
Dave R. Gray

Heart rate of the tropical limpet Cellana grata was monitored on the shore (Cape d'Aguilar, Hong Kong) and in the laboratory using a non-invasive technique. Individual field measurements performed on inactive limpets, in a variety of thermal conditions during a diurnal low tide, showed a general increase in heart rate with increasing body temperature. This relationship was not always evident when monitoring individual responses over a diurnal low tide period, since under some circumstances, heart rate of individuals decreased with increasing the temperature of the substrate and foot. A factorial laboratory experiment showed that heart rate was faster at higher temperatures but slower in larger animals. The combined evaluation of field and laboratory data suggests that limpets in some habitats may be able to regulate their metabolic rate when resting on hot rock substrates.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Azure D. Grant ◽  
Mark Newman ◽  
Lance J. Kriegsfeld

AbstractThe menstrual cycle is characterized by predictable patterns of physiological change across timescales. Although patterns of reproductive hormones across the menstrual cycle, particularly ultradian rhythms, are well described, monitoring these measures repeatedly to predict the preovulatory luteinizing hormone (LH) surge is not practical. In the present study, we explored whether non-invasive measures coupled to the reproductive system: high frequency distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing, could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures in 45 premenopausal and 10 perimenopausal cycles alongside dates of supra-surge threshold LH and menstruation. Additionally, urinary estradiol and progesterone metabolites were measured daily surrounding the LH surge in 20 cycles. Wavelet analysis revealed a consistent pattern of DBT and HRV ultradian rhythm (2–5 h) power that uniquely enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge, suggesting that automated ultradian rhythm monitoring may provide a novel and convenient method for non-invasive fertility assessment.


2020 ◽  
Vol 16 (1) ◽  
pp. 47-53
Author(s):  
Vicente Benavides-Córdoba ◽  
Mauricio Palacios Gómez

Introduction: Animal models have been used to understand the pathophysiology of pulmonary hypertension, to describe the mechanisms of action and to evaluate promising active ingredients. The monocrotaline-induced pulmonary hypertension model is the most used animal model. In this model, invasive and non-invasive hemodynamic variables that resemble human measurements have been used. Aim: To define if non-invasive variables can predict hemodynamic measures in the monocrotaline-induced pulmonary hypertension model. Materials and Methods: Twenty 6-week old male Wistar rats weighing between 250-300g from the bioterium of the Universidad del Valle (Cali - Colombia) were used in order to establish that the relationships between invasive and non-invasive variables are sustained in different conditions (healthy, hypertrophy and treated). The animals were organized into three groups, a control group who was given 0.9% saline solution subcutaneously (sc), a group with pulmonary hypertension induced with a single subcutaneous dose of Monocrotaline 30 mg/kg, and a group with pulmonary hypertension with 30 mg/kg of monocrotaline treated with Sildenafil. Right ventricle ejection fraction, heart rate, right ventricle systolic pressure and the extent of hypertrophy were measured. The functional relation between any two variables was evaluated by the Pearson correlation coefficient. Results: It was found that all correlations were statistically significant (p <0.01). The strongest correlation was the inverse one between the RVEF and the Fulton index (r = -0.82). The Fulton index also had a strong correlation with the RVSP (r = 0.79). The Pearson correlation coefficient between the RVEF and the RVSP was -0.81, meaning that the higher the systolic pressure in the right ventricle, the lower the ejection fraction value. Heart rate was significantly correlated to the other three variables studied, although with relatively low correlation. Conclusion: The correlations obtained in this study indicate that the parameters evaluated in the research related to experimental pulmonary hypertension correlate adequately and that the measurements that are currently made are adequate and consistent with each other, that is, they have good predictive capacity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elisa Mejía-Mejía ◽  
James M. May ◽  
Mohamed Elgendi ◽  
Panayiotis A. Kyriacou

AbstractHeart rate variability (HRV) utilizes the electrocardiogram (ECG) and has been widely studied as a non-invasive indicator of cardiac autonomic activity. Pulse rate variability (PRV) utilizes photoplethysmography (PPG) and recently has been used as a surrogate for HRV. Several studies have found that PRV is not entirely valid as an estimation of HRV and that several physiological factors, including the pulse transit time (PTT) and blood pressure (BP) changes, may affect PRV differently than HRV. This study aimed to assess the relationship between PRV and HRV under different BP states: hypotension, normotension, and hypertension. Using the MIMIC III database, 5 min segments of PPG and ECG signals were used to extract PRV and HRV, respectively. Several time-domain, frequency-domain, and nonlinear indices were obtained from these signals. Bland–Altman analysis, correlation analysis, and Friedman rank sum tests were used to compare HRV and PRV in each state, and PRV and HRV indices were compared among BP states using Kruskal–Wallis tests. The findings indicated that there were differences between PRV and HRV, especially in short-term and nonlinear indices, and although PRV and HRV were altered in a similar manner when there was a change in BP, PRV seemed to be more sensitive to these changes.


2021 ◽  
Vol 7 (1) ◽  
pp. e000907
Author(s):  
Giovanni Polsinelli ◽  
Angelo Rodio ◽  
Bruno Federico

IntroductionThe measurement of heart rate is commonly used to estimate exercise intensity. However, during endurance performance, the relationship between heart rate and oxygen consumption may be compromised by cardiovascular drift. This physiological phenomenon mainly consists of a time-dependent increase in heart rate and decrease in systolic volume and may lead to overestimate absolute exercise intensity in prediction models based on heart rate. Previous research has established that cardiovascular drift is correlated to the increase in core body temperature during prolonged exercise. Therefore, monitoring body temperature during exercise may allow to quantify the increase in heart rate attributable to cardiovascular drift and to improve the estimate of absolute exercise intensity. Monitoring core body temperature during exercise may be invasive or inappropriate, but the external auditory canal is an easily accessible alternative site for temperature measurement.Methods and analysisThis study aims to assess the degree of correlation between trends in heart rate and in ear temperature during 120 min of steady-state cycling with intensity of 59% of heart rate reserve in a thermally neutral indoor environment. Ear temperature will be monitored both at the external auditory canal level with a contact probe and at the tympanic level with a professional infrared thermometer.Ethics and disseminationThe study protocol was approved by an independent ethics committee. The results will be submitted for publication in academic journals and disseminated to stakeholders through summary documents and information meetings.


Sign in / Sign up

Export Citation Format

Share Document