Evidence for translational control of β-tubulin synthesis during differentiation ofLeishmania donovani

Parasitology ◽  
1991 ◽  
Vol 103 (2) ◽  
pp. 197-205 ◽  
Author(s):  
M. Bhaumik ◽  
S. Das ◽  
S. Adhya

Tubulin biosynthesis was rapidly induced during transformation of the mammalian (amastigote) stage of the kinetoplastid parasiteLeishmania donovanito flagellated promastigotes. However, transcription of β-tubulin genes occurred constitutively, as judged by nascent RNA synthesis in isolated nuclei and Northern blotting of steady-state mRNA. Two mRNA species of 2.2 and 2.4 kb were shared by the two cell-types, while a third 2.6 kb species, constituting about 20% of the total, was present in large amounts in promastigotes. RNase protection experiments demonstrated sequence micro-heterogeneity in the 5′-untranslated region, the pattern of which was identical in promastigotes and amastigotes. By primer extension assays, heterogeneity in the 5′-terminal cap structure of amastigote β-tubulin mRNA and differential pausing of reverse transcriptase within the mini-exon leader region were detected. These differences correlated with enhanced translational efficiency of tubulin mRNA from promastigotes in a rabbit reticulocyte lysate system. The results indicate that translational control plays a major role in tubulin induction duringL. donovanidifferentiation.

2009 ◽  
Vol 87 (6) ◽  
pp. 989-997 ◽  
Author(s):  
Katy A. Garant ◽  
Thomas H. MacRae

Tubulin is a heterodimeric protein composed of α- and β-tubulin. In most organisms, they are encoded by multiple gene families whose members are subject to differential regulation. The objective of the work described herein was to better understand tubulin gene expression in the extremophile Artemia franciscana To this end tubulin cDNAs were cloned and sequenced. αAT2, an α-tubulin cDNA, differed by one nucleotide from αAT1, a previously cloned Artemia cDNA. This change, possibly generated by allelic variation, caused an M313V substitution in α-tubulin. The amino acid sequence of β-tubulin encoded by βAT1, one of only a very limited number of cloned crustacean β-tubulin cDNA sequences yet available, and the first from Artemia, was similar to other β-tubulins. However, βAT1 possessed four degenerate TATA boxes in the 5′ untranslated region, although authentic TATA and CCAAT boxes occurred in the 3′ non-coding sequence. Analyses by quantitative PCR demonstrated that the amount of tubulin mRNA declined relative to total mRNA in progressive life history stages of Artemia and also that the organism contained more αAT2- than βAT1-tubulin mRNA at all developmental phases examined.


Genetics ◽  
1984 ◽  
Vol 108 (1) ◽  
pp. 123-141
Author(s):  
Timothy G Burland ◽  
Tim Schedl ◽  
Keith Gull ◽  
William F Dove

ABSTRACT Physarum displays two vegetative cell types, uninucleate myxamoebae and multinucleate plasmodia. Mutant myxamoebae of Physarum resistant to the antitubulin drug methylbenzimidazole-2-yl-carbamate (MBC) were isolated. All mutants tested were cross-resistant to other benzimidazoles but not to cycloheximide or emetine. Genetic analysis showed that mutation to MBC resistance can occur at any one of four unlinked loci, benA, benB, benC or benD. MBC resistance of benB and benD mutants was expressed in plasmodia, but benA and benC mutant plasmodia were MBC sensitive, suggesting that benA and benC encode myxamoeba-specific products. Myxamoebae carrying the recessive benD210 mutation express a β-tubulin with noval electrophoretic mobility, in addition to a β-tubulin with wild-type mobility. This and other evidence indicates that benD is a structural gene for β-tubulin, and that at least two β-tubulin genes are expressed in myxamoebae. Comparisons of the β-tubulins of wildtype and benD210 strains by gel electrophoresis revealed that, of the three (or more) β-tubulin genes expressed in Physarum, one, benD, is expressed in both myxamoebae and plasmodia, one is expressed specifically in myxamoebae and one is expressed specifically in plasmodia. However, mutation in only one gene, benD, is sufficient to confer MBC resistance on both myxamoebae and plasmodia.


1996 ◽  
Vol 318 (3) ◽  
pp. 771-777 ◽  
Author(s):  
Richard J PLEASS ◽  
Paul D. ANDREWS ◽  
Michael A KERR ◽  
Jenny M. WOOF

Receptors for the Fc portion of IgA (FcαR) trigger important immunological elimination processes against IgA-coated targets. Investigation of human FcαR (CD89) transcripts in neutrophils, eosinophils and a monocyte-like cell line, THP-1, with the use of reverse transcriptase PCR, Northern blotting and RNase protection analysis, has provided evidence in these cell types for at least two distinct transcripts generated by alternative splicing. The cDNAs derived from the two major transcripts of both neutrophils and eosinophils have been cloned and sequenced. For both cell types, the larger clone represents the previously described full-length receptor, whereas the second, shorter, splice variant lacks the entire second, membrane-proximal, Ig-like domain. Stable CHO-K1 transfectants have been obtained for both full-length and truncated variant neutrophil receptors. Whereas the full-length receptor is recognized by a panel of five anti-FcαR monoclonal antibodies (mAbs), the shorter variant is bound weakly by only two of the antibodies, suggesting that the epitopes recognized by the majority of the mAbs lie at least in part in the second Ig-like domain of FcαR. Both full-length and splice variant forms of the receptor bind secretory IgA, but the weak binding to serum IgA seen with the full-length receptor is not evident with the shorter variant. Alternative splicing might therefore serve as a means of diversifying FcαR structure and function.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Khalid M. Mohammedsalih ◽  
Jürgen Krücken ◽  
Ahmed Bashar ◽  
Fathel-Rahman Juma ◽  
Abdalhakaim A. H. Abdalmalaik ◽  
...  

Abstract Background Benzimidazole (BZ) anthelmintics are widely used to control infections with parasitic nematodes, but BZ resistance is an emerging threat among several nematode species infecting humans and animals. In Sudan, BZ-resistant Haemonchus contortus populations were recently reported in goats in South Darfur State. The objective of this study was to collect data regarding the situation of BZ resistance in cattle parasitic nematodes in South Darfur using phenotypic and molecular approaches, besides providing some epidemiological data on nematodes in cattle. Methods The faecal egg count reduction test and the egg hatch test (EHT) were used to evaluate benzimidazole efficacy in cattle nematodes in five South Darfur study areas: Beleil, Kass, Nyala, Rehed Al-Birdi and Tulus. Genomic DNA was extracted from pools of third-stage larvae (L3) (n = 40) during trials, before and after treatment, and pools of adult male Haemonchus spp. (n = 18) from abattoirs. The polymorphisms F167Y, E198A and F200Y in isotype 1 β-tubulin genes of H. contortus and H. placei were analysed using Sanger and pyrosequencing. Results Prevalence of gastro-intestinal helminths in cattle was 71% (313/443). Reduced albendazole faecal egg count reduction efficacy was detected in three study areas: Nyala (93.7%), Rehed Al-Birdi (89.7%) and Tulus (88.2%). In the EHT, EC50 values of these study areas ranged between 0.032 and 0.037 µg/ml thiabendazole. Genus-specific PCRs detected the genera Haemonchus, Trichostrongylus and Cooperia in L3 samples collected after albendazole treatment. Sanger sequencing followed by pyrosequencing assays did not detect elevated frequencies of known BZ resistance-associated alleles in codon F167Y, E198A and F200Y in isotype 1 β-tubulin gene of H. placei (≤ 11.38%). However, polymorphisms were detected in H. contortus and in samples with mixed infections with H. contortus and H. placei at codon 198, including E198L (16/58), E198V (2/58) and potentially E198Stop (1/58). All pooled L3 samples post-albendazole treatment (n = 13) were identified as H. contortus with an E198L substitution at codon 198. Conclusions To the knowledge of the authors, this is the first report of reduced albendazole efficacy in cattle in Sudan and is the first study describing an E198L substitution in phenotypically BZ-resistant nematodes collected from cattle.


Development ◽  
1995 ◽  
Vol 121 (6) ◽  
pp. 1603-1614 ◽  
Author(s):  
A. Hacker ◽  
B. Capel ◽  
P. Goodfellow ◽  
R. Lovell-Badge

In the mouse, Sry is expressed by germ cells in the adult testis and by somatic cells in the genital ridge. Transcripts in the former exist as circular RNA molecules of 1.23 kb, which are unlikely to be efficiently translated. We have used RNase protection to map the extent of the less abundant Sry transcript in the developing gonad. We demonstrate that it is a linear mRNA derived from a single exon. This begins in the unique region 5′ of the protein coding region and extends several kilobases into the 3′ arm of the large inverted repeat which bounds the Sry genomic locus. Knowledge of this transcript, which is very different from that of the human SRY gene, allows us to predict its protein product and reveals several features which may be involved in translational control. Our data is also consistent with there being two promoters for the Sry gene, a proximal one that gives functional transcripts in the genital ridge and a distal promoter used in germ cells in the adult testis. As RNase protection is a quantitative technique, a detailed timecourse of Sry expression was carried out using accurately staged samples. Sry transcripts are first detectable just after 10.5 days post coitum, they reach a peak at 11.5 days and then decline sharply so that none are detected 24 hours later. This was compared with anti-Mullerian hormone gene expression, an early marker of Sertoli cells and the first known downstream gene of Sry. Amh expression begins 20 hours after the onset of Sry expression at a time when Sry transcripts are at their peak. While this result does not prove a direct interaction between the two genes, it defines the critical period during which Sry must act to initiate Sertoli cell differentiation.


2018 ◽  
Vol 39 (1) ◽  
Author(s):  
Yu-Chang Ku ◽  
Min-Hua Lai ◽  
Chen-Chia Lo ◽  
Yi-Chuan Cheng ◽  
Jian-Tai Qiu ◽  
...  

ABSTRACT Recent studies have suggested that DDX3 functions in antiviral innate immunity, but the underlying mechanism remains elusive. We previously identified target mRNAs whose translation is controlled by DDX3. Pathway enrichment analysis of these targets indicated that DDX3 is involved in various infections and inflammation. Using immunoblotting, we confirmed that PACT, STAT1, GNB2, Rac1, TAK1, and p38 mitogen-activated protein kinase (MAPK) proteins are downregulated by DDX3 knockdown in human monocytic THP-1 cells and epithelial HeLa cells. Polysome profiling revealed that DDX3 knockdown reduces the translational efficiency of target mRNAs. We further demonstrated DDX3-mediated translational control of target mRNAs by luciferase reporter assays. To examine the effects of DDX3 knockdown on macrophage migration and phagocytosis, we performed in vitro cell migration assay and flow cytometry analysis of the uptake of green fluorescent protein-expressing Escherichia coli in THP-1 cells. The DDX3 knockdown cells exhibited impaired macrophage migration and phagocytosis. Moreover, we used a human cytokine antibody array to identify the cytokines affected by DDX3 knockdown. Several chemokines were decreased considerably in DDX3 knockdown THP-1 cells after lipopolysaccharide or poly(I·C) stimulation. Lastly, we demonstrated that DDX3 is crucial for the recruitment of phagocytes to the site of inflammation in transgenic zebrafish.


2004 ◽  
Vol 199 (12) ◽  
pp. 1651-1658 ◽  
Author(s):  
Andrea K. Perry ◽  
Edward K. Chow ◽  
Julia B. Goodnough ◽  
Wen-Chen Yeh ◽  
Genhong Cheng

TANK-binding kinase-1 (TBK1) and the inducible IκB kinase (IKK-i) have been shown recently to activate interferon (IFN) regulatory factor-3 (IRF3), the primary transcription factor regulating induction of type I IFNs. Here, we have compared the role and specificity of TBK1 in the type I IFN response to lipopolysaccharide (LPS), polyI:C, and viral challenge by examining IRF3 nuclear translocation, signal transducer and activator of transcription 1 phosphorylation, and induction of IFN-regulated genes. The LPS and polyI:C-induced IFN responses were abolished and delayed, respectively, in macrophages from mice with a targeted disruption of the TBK1 gene. When challenged with Sendai virus, the IFN response was normal in TBK1−/− macrophages, but defective in TBK1−/− embryonic fibroblasts. Although both TBK1 and IKK-i are expressed in macrophages, only TBK1 but not IKK-i was detected in embryonic fibroblasts by Northern blotting analysis. Furthermore, the IFN response in TBK1−/− embryonic fibroblasts can be restored by reconstitution with wild-type IKK-i but not a mutant IKK-i lacking kinase activity. Thus, our studies suggest that TBK1 plays an important role in the Toll-like receptor–mediated IFN response and is redundant with IKK-i in the response of certain cell types to viral infection.


2021 ◽  
Vol 28 ◽  
pp. 36-41
Author(s):  
Yu. O. Bilonozhko ◽  
A. M. Rabokon ◽  
A. S. Postovoitova ◽  
L. O. Kalafat ◽  
N. S. Boiko ◽  
...  

Aim. The aim of the study was to establish genetic differences between V. album growing in different parts of Ukraine. Methods. White mistletoe samples collected in different regions of Ukraine were used in the study. The method of estimating the intron length polymorphism of β-tubulin genes was used. Amplified DNA fragments were fractionated by non-denaturing polyacrylamide gel electrophoresis and visualized by silver nitrate staining. Results. The genotypes of 91 white mistletoe plants were analyzed. DNA profiles of white mistletoe with a specific amplicons of β-tubulin gene introns were obtained, which allowed to differentiate the samples from each other. Fingerprinting data were used for cluster analysis and dendrogram construction. Conclusions. It was found that the analyzed mistletoe samples did not differ by geographical factor and were characterized by a low level of genetic diversity in the studied samples. Keywords: Viscum album L., intron length polymorphism, β-tubulin, genetic variability, Ukraine.


Sign in / Sign up

Export Citation Format

Share Document