scholarly journals High-throughput decoding of drug targets and drug resistance mechanisms in African trypanosomes

Parasitology ◽  
2013 ◽  
Vol 141 (1) ◽  
pp. 77-82 ◽  
Author(s):  
DAVID HORN

SUMMARYThe availability of genome sequence data has facilitated the development of high-throughput genetic screening approaches in microbial pathogens. In the African trypanosome, Trypanosoma brucei, genome-scale RNA interference screens have proven particularly effective in this regard. These genetic screens allow for identification of the genes that contribute to a particular pathway or mechanisms of interest. The approach has been used to assess loss-of-fitness, revealing the genes and proteins required for parasite viability and growth. The outputs from these screens predict essential and dispensable genes and facilitate drug target prioritization efforts. The approach has also been used to assess resistance to anti-trypanosomal drugs, revealing the genes and proteins that facilitate drug uptake and action. These outputs also highlight likely mechanisms underlying clinically relevant drug resistance. I first review these findings in the context of what we know about current drugs. I then describe potential contributions that these high-throughput approaches could make to the development and implementation of new drugs.

2021 ◽  
Vol 12 ◽  
Author(s):  
Tushar Khare ◽  
Uttpal Anand ◽  
Abhijit Dey ◽  
Yehuda G. Assaraf ◽  
Zhe-Sheng Chen ◽  
...  

Antibiotic resistance or microbial drug resistance is emerging as a serious threat to human healthcare globally, and the multidrug-resistant (MDR) strains are imposing major hurdles to the progression of drug discovery programs. Newer antibiotic-resistance mechanisms in microbes contribute to the inefficacy of the existing drugs along with the prolonged illness and escalating expenditures. The injudicious usage of the conventional and commonly available antibiotics in human health, hygiene, veterinary and agricultural practices is proving to be a major driver for evolution, persistence and spread of antibiotic-resistance at a frightening rate. The drying pipeline of new and potent antibiotics is adding to the severity. Therefore, novel and effective new drugs and innovative therapies to treat MDR infections are urgently needed. Apart from the different natural and synthetic drugs being tested, plant secondary metabolites or phytochemicals are proving efficient in combating the drug-resistant strains. Various phytochemicals from classes including alkaloids, phenols, coumarins, terpenes have been successfully demonstrated their inhibitory potential against the drug-resistant pathogens. Several phytochemicals have proved effective against the molecular determinants responsible for attaining the drug resistance in pathogens like membrane proteins, biofilms, efflux pumps and bacterial cell communications. However, translational success rate needs to be improved, but the trends are encouraging. This review highlights current knowledge and developments associated challenges and future prospects for the successful application of phytochemicals in combating antibiotic resistance and the resistant microbial pathogens.


2017 ◽  
Vol 17 (19) ◽  
pp. 2129-2142 ◽  
Author(s):  
Renata Płocinska ◽  
Malgorzata Korycka-Machala ◽  
Przemyslaw Plocinski ◽  
Jaroslaw Dziadek

Background: Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, is a leading infectious disease organism, causing millions of deaths each year. This serious pathogen has been greatly spread worldwide and recent years have observed an increase in the number of multi-drug resistant and totally drug resistant M. tuberculosis strains (WHO report, 2014). The danger of tuberculosis becoming an incurable disease has emphasized the need for the discovery of a new generation of antimicrobial agents. The development of novel alternative medical strategies, new drugs and the search for optimal drug targets are top priority areas of tuberculosis research. Factors: Key characteristics of mycobacteria include: slow growth, the ability to transform into a metabolically silent - latent state, intrinsic drug resistance and the relatively rapid development of acquired drug resistance. These factors make finding an ideal antituberculosis drug enormously challenging, even if it is designed to treat drug sensitive tuberculosis strains. A vast majority of canonical antibiotics including antituberculosis agents target bacterial cell wall biosynthesis or DNA/RNA processing. Novel therapeutic approaches are being tested to target mycobacterial cell division, twocomponent regulatory factors, lipid synthesis and the transition between the latent and actively growing states. Discussion and Conclusion: This review discusses the choice of cellular targets for an antituberculosis therapy, describes putative drug targets evaluated in the recent literature and summarizes potential candidates under clinical and pre-clinical development. We focus on the key cellular process of DNA replication, as a prominent target for future antituberculosis therapy. We describe two main pathways: the biosynthesis of nucleic acids precursors – the nucleotides, and the synthesis of DNA molecules. We summarize data regarding replication associated proteins that are critical for nucleotide synthesis, initiation, unwinding and elongation of the DNA during the replication process. They are pivotal processes required for successful multiplication of the bacterial cells and hence they are extensively investigated for the development of antituberculosis drugs. Finally, we summarize the most potent inhibitors of DNA synthesis and provide an up to date report on their status in the clinical trials.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 260
Author(s):  
Ronay Cetin ◽  
Eva Quandt ◽  
Manuel Kaulich

Drug resistance is a commonly unavoidable consequence of cancer treatment that results in therapy failure and disease relapse. Intrinsic (pre-existing) or acquired resistance mechanisms can be drug-specific or be applicable to multiple drugs, resulting in multidrug resistance. The presence of drug resistance is, however, tightly coupled to changes in cellular homeostasis, which can lead to resistance-coupled vulnerabilities. Unbiased gene perturbations through RNAi and CRISPR technologies are invaluable tools to establish genotype-to-phenotype relationships at the genome scale. Moreover, their application to cancer cell lines can uncover new vulnerabilities that are associated with resistance mechanisms. Here, we discuss targeted and unbiased RNAi and CRISPR efforts in the discovery of drug resistance mechanisms by focusing on first-in-line chemotherapy and their enforced vulnerabilities, and we present a view forward on which measures should be taken to accelerate their clinical translation.


2020 ◽  
Vol 21 (17) ◽  
pp. 5971
Author(s):  
Najeeb Ullah ◽  
Hina Andaleeb ◽  
Celestin Nzanzu Mudogo ◽  
Sven Falke ◽  
Christian Betzel ◽  
...  

Plasmodium species are protozoan parasites causing the deadly malaria disease. They have developed effective resistance mechanisms against most antimalarial medication, causing an urgent need to identify new antimalarial drug targets. Ideally, new drugs would be generated to specifically target the parasite with minimal or no toxicity to humans, requiring these drug targets to be distinctly different from the host’s metabolic processes or even absent in the host. In this context, the essential presence of vitamin B6 biosynthesis enzymes in Plasmodium, the pyridoxal phosphate (PLP) biosynthesis enzyme complex, and its absence in humans is recognized as a potential drug target. To characterize the PLP enzyme complex in terms of initial drug discovery investigations, we performed structural analysis of the Plasmodium vivax PLP synthase domain (Pdx1), glutaminase domain (Pdx2), and Pdx1–Pdx2 (Pdx) complex (PLP synthase complex) by utilizing complementary bioanalytical techniques, such as dynamic light scattering (DLS), X-ray solution scattering (SAXS), and electron microscopy (EM). Our investigations revealed a dodecameric Pdx1 and a monodispersed Pdx complex. Pdx2 was identified in monomeric and in different oligomeric states in solution. Interestingly, mixing oligomeric and polydisperse Pdx2 with dodecameric monodisperse Pdx1 resulted in a monodispersed Pdx complex. SAXS measurements revealed the low-resolution dodecameric structure of Pdx1, different oligomeric structures for Pdx2, and a ring-shaped dodecameric Pdx1 decorated with Pdx2, forming a heteromeric 24-meric Pdx complex.


2016 ◽  
Vol 14 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Maurizio Zazzi ◽  
Alessandro Cozzi-Lepri ◽  
Mattia C.F. Prosperi

2007 ◽  
Vol 35 (5) ◽  
pp. 1325-1328 ◽  
Author(s):  
L.J. Alderwick ◽  
H.L. Birch ◽  
A.K. Mishra ◽  
L. Eggeling ◽  
G.S. Besra

In spite of effective antibiotics to treat TB (tuberculosis) since the early 1960s, we enter the new millennium with TB, currently the leading cause of death from a single infectious agent, killing more than three million people worldwide each year. Thus an understanding of drug-resistance mechanisms, the immunobiology of cell wall components to elucidate host–pathogen interactions and the discovery of new drug targets are now required for the treatment of TB. Above the plasma membrane is a classical chemotype IV PG (peptidoglycan) to which is attached the macromolecular structure, mycolyl-arabinogalactan, via a unique diglycosylphosphoryl bridge. This review will discuss the assembly of the mAGP (mycolyl-arabinogalactan-peptidoglycan), its associated glycolipids and the site of action of EMB (ethambutol), bringing forward a new era in TB research and focus on new drugs to combat multidrug resistant TB.


2020 ◽  
Author(s):  
Juan F. Quintana ◽  
Juan Bueren-Calabuig ◽  
Fabio Zuccotto ◽  
Harry P. de Koning ◽  
David Horn ◽  
...  

AbstractDefining mode of action is vital for both developing new drugs and predicting potential resistance mechanisms. African trypanosome pentamidine and melarsoprol sensitivity is predominantly mediated by aquaglyceroporin 2 (TbAQP2), a channel associated with water/glycerol transport. TbAQP2 is expressed at the flagellar pocket membrane and chimerisation with TbAQP3 renders parasites resistant to both drugs. Two models for how TbAQP2 mediates pentamidine sensitivity have emerged; that TbAQP2 mediates pentamidine translocation or via binding to TbAQP2, with subsequent endocytosis, but trafficking and regulation of TbAQPs is uncharacterised. We demonstrate that TbAQP2 is organised as a high order complex, is ubiquitylated and transported to the lysosome. Unexpectedly, mutation of potential ubiquitin conjugation sites, i.e. cytoplasmic lysine residues, reduced folding and tetramerization efficiency and triggered ER retention. Moreover, TbAQP2/TbAQP3 chimerisation also leads to impaired oligomerisation, mislocalisation, and increased turnover. These data suggest that TbAQP2 stability is highly sensitive to mutation and contributes towards emergence of drug resistance.


2021 ◽  
Vol 9 (8) ◽  
pp. 1741
Author(s):  
Dorothea K. Thompson ◽  
Stephen M. Sharkady

Cedecea, a genus in the Enterobacteriaceae family, includes several opportunistic pathogens reported to cause an array of sporadic acute infections, most notably of the lung and bloodstream. One species, Cedecea neteri, is associated with cases of bacteremia in immunocompromised hosts and has documented resistance to different antibiotics, including β-lactams and colistin. Despite the potential to inflict serious infections, knowledge about drug resistance determinants in Cedecea is limited. In this study, we utilized whole-genome sequence data available for three environmental strains (SSMD04, M006, ND14a) of C. neteri and various bioinformatics tools to analyze drug resistance genes in this bacterium. All three genomes harbor multiple chromosome-encoded β-lactamase genes. A deeper analysis of β-lactamase genes in SSMD04 revealed four metallo-β-lactamases, a novel variant, and a CMY/ACT-type AmpC putatively regulated by a divergently transcribed AmpR. Homologs of known resistance-nodulation-cell division (RND)-type multidrug efflux pumps such as OqxB, AcrB, AcrD, and MdtBC were also identified. Genomic island prediction for SSMD04 indicated that tolC, involved in drug and toxin export across the outer membrane of Gram-negative bacteria, was acquired by a transposase-mediated genetic transfer mechanism. Our study provides new insights into drug resistance mechanisms of an environmental microorganism capable of behaving as a clinically relevant opportunistic pathogen.


2017 ◽  
Author(s):  
Annie N. Cowell ◽  
Eva S. Istvan ◽  
Amanda K. Lukens ◽  
Maria G. Gomez-Lorenzo ◽  
Manu Vanaerschot ◽  
...  

AbstractChemogenetic characterization through in vitro evolution combined with whole genome analysis is a powerful tool to discover novel antimalarial drug targets and identify drug resistance genes. Our comprehensive genome analysis of 262 Plasmodium falciparum parasites treated with 37 diverse compounds reveals how the parasite evolves to evade the action of small molecule growth inhibitors. This detailed data set revealed 159 gene amplifications and 148 nonsynonymous changes in 83 genes which developed during resistance acquisition. Using a new algorithm, we show that gene amplifications contribute to 1/3 of drug resistance acquisition events. In addition to confirming known multidrug resistance mechanisms, we discovered novel multidrug resistance genes. Furthermore, we identified promising new drug target-inhibitor pairs to advance the malaria elimination campaign, including: thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This deep exploration of the P. falciparum resistome and drug-able genome will guide future drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms of the deadliest malaria parasite.One Sentence SummaryWhole genome sequencing reveals how Plasmodium falciparum evolves resistance to diverse compounds and identifies new antimalarial drug targets.


Sign in / Sign up

Export Citation Format

Share Document