Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli–Rhodnius prolixus interactions

Parasitology ◽  
2016 ◽  
Vol 143 (11) ◽  
pp. 1459-1468 ◽  
Author(s):  
JULIANA DE O. RODRIGUES ◽  
MARCELO G. LORENZO ◽  
OLINDO A. MARTINS-FILHO ◽  
SIMON L. ELLIOT ◽  
ALESSANDRA A. GUARNERI

SUMMARYTrypanosoma rangeli is a protozoan parasite, which does not cause disease in humans, although it can produce different levels of pathogenicity to triatomines, their invertebrate hosts. We tested whether infection imposed a temperature-dependent cost on triatomine fitness using T. rangeli with different life histories. Parasites cultured only in liver infusion tryptose medium (cultured) and parasites exposed to cyclical passages through mice and triatomines (passaged) were used. We held infected insects at four temperatures between 21 and 30 °C and measured T. rangeli growth in vitro at the same temperatures in parallel. Overall, T. rangeli infection induced negative effects on insect fitness. In the case of cultured infection, parasite effects were temperature-dependent. Intermoult period, mortality rates and ecdysis success were affected in those insects exposed to lower temperatures (21 and 24 °C). For passaged-infected insects, the effects were independent of temperature, intermoult period being prolonged in all infected groups. Trypanosoma rangeli seem to be less tolerant to higher temperatures since cultured-infected insects showed a reduction in the infection rates and passaged-infected insects decreased the salivary gland infection rates in those insects submitted to 30 °C. In vitro growth of T. rangeli was consistent with these results.

Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


1990 ◽  
Vol 64 (03) ◽  
pp. 402-406 ◽  
Author(s):  
M D Oethinger ◽  
E Seifried

SummaryThe present in vitro study investigated dose-, time- and temperature-dependent effects of two-chain urokinase plasminogen activato(u-PA, urokinase) on normal citrated plasma. When 10 μg/ml u-PA wereadded to pooled normal plasma and incubated for 30 min at an ambient temperature (25° C), α2-antiplas-min decreased to 8% of the control value. Incubation on ice yielded a decrease to 45% of control,whereas α2-antiplasmin was fully consumed at 37° C. Fibrinogen and plasminogen fell to 46% and 39%, respectively, after a 30 min incubation at 25° C. Thrombin time prolonged to 190% of control.Various inhibitors were studied with respect to their suitability and efficacy to prevent these in vitro effects. Aprotinin exhibited a good protective effect on fibrinogen at concentrations exceeding 500 KlU/ml plasma. Its use, however, was limited due to interferences with some haemostatic assays. We could demonstrate that L-Glutamyl-L-Glycyl-L-Arginyl chloromethyl ketone (GGACK) and a specific polyclonal anti-u-PA-antibody (anti-u-PA-IgG) effectively inhibited urokinase-induced plasmin generation without interfering with haemostatic assays. The anti-u-PA-antibody afforded full protection ofα2-antiplasmin at therapeutic levels of u-PA.It is concluded that u-PA in plasma samples from patients during thrombolytic therapy may induce in vitro effects which should be prevented by the use of a suitable inhibitor such as GGACK or specific anti-u-PA-antibody.


2020 ◽  
Vol 18 (2) ◽  
pp. 148-157 ◽  
Author(s):  
Triantafyllos Didangelos ◽  
Konstantinos Kantartzis

The cardiac effects of exogenously administered insulin for the treatment of diabetes (DM) have recently attracted much attention. In particular, it has been questioned whether insulin is the appropriate treatment for patients with type 2 diabetes mellitus and heart failure. While several old and some new studies suggested that insulin treatment has beneficial effects on the heart, recent observational studies indicate associations of insulin treatment with an increased risk of developing or worsening of pre-existing heart failure and higher mortality rates. However, there is actually little evidence that the associations of insulin administration with any adverse outcomes are causal. On the other hand, insulin clearly causes weight gain and may also cause serious episodes of hypoglycemia. Moreover, excess of insulin (hyperinsulinemia), as often seen with the use of injected insulin, seems to predispose to inflammation, hypertension, dyslipidemia, atherosclerosis, heart failure, and arrhythmias. Nevertheless, it should be stressed that most of the data concerning the effects of insulin on cardiac function derive from in vitro studies with isolated animal hearts. Therefore, the relevance of the findings of such studies for humans should be considered with caution. In the present review, we summarize the existing data about the potential positive and negative effects of insulin on the heart and attempt to answer the question whether any adverse effects of insulin or the consequences of hyperglycemia are more important and may provide a better explanation of the close association of DM with heart failure.


2021 ◽  
pp. 088532822110346
Author(s):  
Mohammad Yoozbashi ◽  
Hamid Rashidzadeh ◽  
Mehraneh Kermanian ◽  
Somayeh Sadighian ◽  
Mir-Jamal Hosseini ◽  
...  

In this research, magnetic nanostructured lipid carriers (Mag-NLCs) were synthesized for curcumin (CUR) delivery. NLCs are drug-delivery systems prepared by mixing solid and liquid (oil) lipids. For preparation of NLCs, cetylpalmitate was selected as solid lipid and fish oil as liquid lipid. CUR-Mag-NLCs were prepared using high-pressure homogenization technique and were characterized by methods including X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS). The CUR-Mag-NLCs were developed as a particle with a size of 140 ± 3.6 nm, a polydispersity index of 0.196, and a zeta potential of −22.6 mV. VSM analysis showed that the CUR-Mag-NLCs have excellent magnetic properties. Release rate of the drug was higher at 42 °C than 37 °C, indicating that release of the synthesized nanoparticles is temperature-dependent. Evaluation of mitochondrial toxicity was done using the isolated rats liver mitochondria including glutathione (GSH), malondialdehyde (MDA), and the ferric- reducing ability of plasma (FRAP) assays to study biosafety of the CUR-Mag-NLCs. Results of In vitro study on the isolated mitochondria revealed that both CUR-Mag-NLCs and curcumin have no specific mitochondrial toxicity.


2021 ◽  
Vol 9 (6) ◽  
pp. 1209
Author(s):  
Nuria Montes-Osuna ◽  
Carmen Gómez-Lama Cabanás ◽  
Antonio Valverde-Corredor ◽  
Garikoitz Legarda ◽  
Pilar Prieto ◽  
...  

Stress caused by drought and salinity may compromise growth and productivity of olive (Olea europaea L.) tree crops. Several studies have reported the use of beneficial rhizobacteria to alleviate symptoms produced by these stresses, which is attributed in some cases to the activity of 1-aminocyclopropane-1-carboxylic acid deaminase (ACD). A collection of beneficial olive rhizobacteria was in vitro screened for ACD activity. Pseudomonas sp. PICF6 displayed this phenotype and sequencing of its genome confirmed the presence of an acdS gene. In contrast, the well-known root endophyte and biocontrol agent Pseudomonas simiae PICF7 was defective in ACD activity, even though the presence of an ACD-coding gene was earlier predicted in its genome. In this study, an unidentified deaminase was confirmed instead. Greenhouse experiments with olive ‘Picual’ plants inoculated either with PICF6 or PICF7, or co-inoculated with both strains, and subjected to drought or salt stress were carried out. Several physiological and biochemical parameters increased in stressed plants (i.e., stomatal conductance and flavonoids content), regardless of whether or not they were previously bacterized. Results showed that neither PICF6 (ACD positive) nor PICF7 (ACD negative) lessened the negative effects caused by the abiotic stresses tested, at least under our experimental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Moe Ichikawa ◽  
Hiroki Akamine ◽  
Michika Murata ◽  
Sumito Ito ◽  
Kazuo Takayama ◽  
...  

AbstractCaco-2 cells are widely used as an in vitro intestinal epithelial cell model because they can form a monolayer and predict drug absorption with high accuracy. However, Caco-2 cells hardly express cytochrome P450 (CYP), a drug-metabolizing enzyme. It is known that CYP3A4 is the dominant drug-metabolizing enzyme in human small intestine. In this study, we generated CYP3A4-expressing Caco-2 (CYP3A4-Caco-2) cells and attempted to establish a model that can simultaneously evaluate drug absorption and metabolism. CYP3A4-Caco-2 cells were generated by piggyBac transposon vectors. A tetracycline-controllable CYP3A4 expression cassette (tet-on system) was stably transduced into Caco-2 cells, thus regulating the levels of CYP3A4 expression depending on the doxycycline concentration. The CYP3A4 expression levels in CYP3A4-Caco-2 cells cultured in the presence of doxycycline were similar to or higher than those of adult small intestine. The CYP3A4-Caco-2 cells had enough ability to metabolize midazolam, a substrate of CYP3A4. CYP3A4 overexpression had no negative effects on cell proliferation, barrier function, and P-glycoprotein activity in Caco-2 cells. Thus, we succeeded in establishing Caco-2 cells with CYP3A4 metabolizing activity comparable to in vivo human intestinal tissue. This cell line would be useful in pharmaceutical studies as a model that can simultaneously evaluate drug absorption and metabolism.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Regan J. Hayward ◽  
Michael S. Humphrys ◽  
Wilhelmina M. Huston ◽  
Garry S. A. Myers

AbstractDual RNA-seq experiments examining viral and bacterial pathogens are increasing, but vary considerably in their experimental designs, such as infection rates and RNA depletion methods. Here, we have applied dual RNA-seq to Chlamydia trachomatis infected epithelial cells to examine transcriptomic responses from both organisms. We compared two time points post infection (1 and 24 h), three multiplicity of infection (MOI) ratios (0.1, 1 and 10) and two RNA depletion methods (rRNA and polyA). Capture of bacterial-specific RNA were greatest when combining rRNA and polyA depletion, and when using a higher MOI. However, under these conditions, host RNA capture was negatively impacted. Although it is tempting to use high infection rates, the implications on host cell survival, the potential reduced length of infection cycles and real world applicability should be considered. This data highlights the delicate nature of balancing host–pathogen RNA capture and will assist future transcriptomic-based studies to achieve more specific and relevant infection-related biological insights.


Sign in / Sign up

Export Citation Format

Share Document