Auditory verbal hallucinations: neuroimaging and treatment

2016 ◽  
Vol 47 (2) ◽  
pp. 199-208 ◽  
Author(s):  
M. M. Bohlken ◽  
K. Hugdahl ◽  
I. E. C. Sommer

Auditory verbal hallucinations (AVH) are a frequently occurring phenomenon in the general population and are considered a psychotic symptom when presented in the context of a psychiatric disorder. Neuroimaging literature has shown that AVH are subserved by a variety of alterations in brain structure and function, which primarily concentrate around brain regions associated with the processing of auditory verbal stimuli and with executive control functions. However, the direction of association between AVH and brain function remains equivocal in certain research areas and needs to be carefully reviewed and interpreted. When AVH have significant impact on daily functioning, several efficacious treatments can be attempted such as antipsychotic medication, brain stimulation and cognitive–behavioural therapy. Interestingly, the neural correlates of these treatments largely overlap with brain regions involved in AVH. This suggests that the efficacy of treatment corresponds to a normalization of AVH-related brain activity. In this selected review, we give a compact yet comprehensive overview of the structural and functional neuroimaging literature on AVH, with a special focus on the neural correlates of efficacious treatment.

2004 ◽  
Vol 34 (4) ◽  
pp. 577-581 ◽  
Author(s):  
P. C. FLETCHER

From the outset, people have had high expectations of functional neuroimaging. Many will have been disappointed. After roughly a decade of widespread use, even an enthusiastic advocate must be diffident about the impact of the two most frequently used techniques – positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) – upon clinical psychiatry. Perhaps this disappointment arises from an unrealistic expectation of what these techniques are able to tell us about the workings of the normal and the disordered brain. Anyone who hoped for intricate and unambiguous region-to-function mapping was always going to be disappointed. This expectation presupposes, among other things, a thorough understanding of the cognitive functions that are to be mapped onto the brain regions. This understanding, however, while developing, is still rudimentary. Mapping disorder along comparable lines is even more complex since it demands two levels of understanding. The first is of the healthy region-to-function mapping, the second of the disordered region-to-function mapping, which immediately demands a consideration of the nature of the function in the disordered state. After all, someone with schizophrenia, when confronted with a psychological task, might tackle it in a very different way, in terms of the cognitive strategies used, from a healthy person confronted with the same task. The observation that brain activity differs across the two individuals would only be interpretable insofar as one thoroughly understood the processes that each individual invoked in response to the task demands.


CNS Spectrums ◽  
2006 ◽  
Vol 11 (1) ◽  
pp. 52-62 ◽  
Author(s):  
Kara N. Carvalho ◽  
Godfrey D. Pearlson ◽  
Robert S. Astur ◽  
Vince D. Calhoun

ABSTRACTIntroduction:Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving.Objective:We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center.Methods:Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA.Results:Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined.Conclusion:In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.


2017 ◽  
Vol 29 (6) ◽  
pp. 1089-1102 ◽  
Author(s):  
Brian A. Metzger ◽  
Kyle E. Mathewson ◽  
Evelina Tapia ◽  
Monica Fabiani ◽  
Gabriele Gratton ◽  
...  

Research on the neural correlates of consciousness (NCC) has implicated an assortment of brain regions, ERP components, and network properties associated with visual awareness. Recently, the P3b ERP component has emerged as a leading NCC candidate. However, typical P3b paradigms depend on the detection of some stimulus change, making it difficult to separate brain processes elicited by the stimulus itself from those associated with updates or changes in visual awareness. Here we used binocular rivalry to ask whether the P3b is associated with changes in awareness even in the absence of changes in the object of awareness. We recorded ERPs during a probe-mediated binocular rivalry paradigm in which brief probes were presented over the image in either the suppressed or dominant eye to determine whether the elicited P3b activity is probe or reversal related. We found that the timing of P3b (but not its amplitude) was closely related to the timing of the report of a perceptual change rather than to the onset of the probe. This is consistent with the proposal that P3b indexes updates in conscious awareness, rather than being related to stimulus processing per se. Conversely, the probe-related P1 amplitude (but not its latency) was associated with reversal latency, suggesting that the degree to which the probe is processed increases the likelihood of a fast perceptual reversal. Finally, the response-locked P3b amplitude (but not its latency) was associated with the duration of an intermediate stage between reversals in which parts of both percepts coexist (piecemeal period). Together, the data suggest that the P3b reflects an update in consciousness and that the intensity of that process (as indexed by P3b amplitude) predicts how immediate that update is.


2018 ◽  
Vol 30 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Sara B. Pillay ◽  
William L. Gross ◽  
William W. Graves ◽  
Colin Humphries ◽  
Diane S. Book ◽  
...  

Understanding the neural basis of recovery from stroke is a major research goal. Many functional neuroimaging studies have identified changes in brain activity in people with aphasia, but it is unclear whether these changes truly support successful performance or merely reflect increased task difficulty. We addressed this problem by examining differences in brain activity associated with correct and incorrect responses on an overt reading task. On the basis of previous proposals that semantic retrieval can assist pronunciation of written words, we hypothesized that recruitment of semantic areas would be greater on successful trials. Participants were 21 patients with left-hemisphere stroke with phonologic retrieval deficits. They read words aloud during an event-related fMRI paradigm. BOLD signals obtained during correct and incorrect trials were contrasted to highlight brain activity specific to successful trials. Successful word reading was associated with higher BOLD signal in the left angular gyrus. In contrast, BOLD signal in bilateral posterior inferior frontal cortex, SMA, and anterior cingulate cortex was greater on incorrect trials. These data show for the first time the brain regions where neural activity is correlated specifically with successful performance in people with aphasia. The angular gyrus is a key node in the semantic network, consistent with the hypothesis that additional recruitment of the semantic system contributes to successful word production when phonologic retrieval is impaired. Higher activity in other brain regions during incorrect trials likely reflects secondary engagement of attention, working memory, and error monitoring processes when phonologic retrieval is unsuccessful.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexander Maÿe ◽  
Tiezhi Wang ◽  
Andreas K. Engel

Hyper-brain studies analyze the brain activity of two or more individuals during some form of interaction. Several studies found signs of inter-subject brain activity coordination, such as power and phase synchronization or information flow. This hyper-brain coordination is frequently studied in paradigms which induce rhythms or even synchronization, e.g., by mirroring movements, turn-based activity in card or economic games, or joint music making. It is therefore interesting to figure out in how far coordinated brain activity may be induced by a rhythmicity in the task and/or the sensory feedback that the partners receive. We therefore studied the EEG brain activity of dyads in a task that required the smooth pursuit of a target and did not involve any extrinsic rhythms. Partners controlled orthogonal axes of the two-dimensional motion of an object that had to be kept on the target. Using several methods for analyzing hyper-brain coupling, we could not detect signs of coordinated brain activity. However, we found several brain regions in which the frequency-specific activity significantly correlated with the objective task performance, the subjective experience thereof, and of the collaboration. Activity in these regions has been linked to motor control, sensorimotor integration, executive control and emotional processing. Our results suggest that neural correlates of intersubjectivity encompass large parts of brain areas that are considered to be involved in sensorimotor control without necessarily coordinating their activity across agents.


2019 ◽  
Author(s):  
Jessica S. Flannery ◽  
Michael C. Riedel ◽  
Katherine L. Bottenhorn ◽  
Ranjita Poudel ◽  
Taylor Salo ◽  
...  

ABSTRACTReward learning is a ubiquitous cognitive mechanism guiding adaptive choices and behaviors, and when impaired, can lead to considerable mental health consequences. Reward-related functional neuroimaging studies have begun to implicate networks of brain regions essential for processing various peripheral influences (e.g., risk, subjective preference, delay, social context) involved in the multifaceted reward processing construct. To provide a more complete neurocognitive perspective on reward processing that synthesizes findings across the literature while also appreciating these peripheral influences, we utilized emerging meta-analytic techniques to elucidate brain regions, and in turn networks, consistently engaged in distinct aspects of reward processing. Using a data-driven, meta-analytic, k-means clustering approach, we dissociated seven meta-analytic groupings (MAGs) of neuroimaging results (i.e., brain activity maps) from 749 experimental contrasts across 176 reward processing studies involving 13,358 healthy participants. We then performed an exploratory functional decoding approach to gain insight into the putative functions associated with each MAG. We identified a seven-MAG clustering solution which represented dissociable patterns of convergent brain activity across reward processing tasks. Additionally, our functional decoding analyses revealed that each of these MAGs mapped onto discrete behavior profiles that suggested specialized roles in predicting value (MAG-1 & MAG-2) and processing a variety of emotional (MAG-3), external (MAG-4 & MAG-5), and internal (MAG-6 & MAG-7) influences across reward processing paradigms. These findings support and extend aspects of well-accepted reward learning theories and highlight large-scale brain network activity associated with distinct aspects of reward processing.


Author(s):  
R. J. Dolan

Emotions, uniquely among mental states, are characterized by psychological and somatic referents. The former embody the subjectivity of all psychological states. The latter are evident in objectively measurable stereotyped behavioural patterns of facial expression, comportment, and states of autonomic arousal. These include unique patterns of response associated with discrete emotional states, as for example seen in the primary emotions of fear, anger, or disgust often thought of as emotion proper. Emotional states are also unique among psychological states in exerting global effects on virtually all aspects of cognition including attention, perception, and memory. Emotion also exerts biasing influences on high level cognition including the decision-making processes that guide extended behaviour. An informed neurobiological account of emotion needs to incorporate how these wide ranging effects are mediated. Although much of what we can infer about emotional processing in the human brain is derived from clinic-pathological correlations, the advent of high resolution, non-invasive functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) has greatly expanded this knowledge base. This is particularly the case for emotion, as opposed to other areas of cognition, where normative studies have provided a much richer account of the underlying neurobiology than that available on the basis of observations from pathology as in classical neuropsychology. Emotion has historically been considered to reflect the product of activity within the limbic system of the brain. The general utility of the concept of a limbic-based emotional system is limited by a lack of a consensus as to its precise anatomical extent and boundaries, coupled with knowledge that emotion-related brain activity is, to a considerable degree, configured by behavioural context. What this means is that brain regions engaged by, for example, an emotion of fear associated with seeing a snake can have both distinct and common features with an emotion of fear associated with a fearful recollection. Consequently, within this framework emotional states are not unique to any single brain region but are expressed in widespread patterns of brain activity, including activity within early sensory cortices, shaped by the emotion eliciting context. This perspective emphasizes a global propagation of emotional signals as opposed to a perspective of circumscribed limbic-mediated emotion-related activity.


Author(s):  
Tomohiro Ishizu

Functional neuroimaging refers to methods used to non-invasively visualize neural activity in the brain in relation to specific experimental variables. Over the past 15 years, functional neuroimaging has begun to provide novel findings on the neurobiology of our aesthetic activities and art appreciation. This chapter provides a review of functional neuroimaging studies, especially using functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG), on a range of aesthetic experiences and evaluations and their neural correlates. It describes an overview of a number of core brain structures and networks engaged in aesthetic activities, together with general functions of each of the brain regions. It then discusses recent advancements in neuroaesthetics including an investigation into cross-cultural aspects, abstraction of beauty, a contextual effect on aesthetic evaluations, and new analysis techniques.


2014 ◽  
Vol 44 (13) ◽  
pp. 2787-2798 ◽  
Author(s):  
L. Schmaal ◽  
A. E. Goudriaan ◽  
L. Joos ◽  
G. Dom ◽  
T. Pattij ◽  
...  

BackgroundImpulsive decision making is a hallmark of frequently occurring addiction disorders including alcohol dependence (AD). Therefore, ameliorating impulsive decision making is a promising target for the treatment of AD. Previous studies have shown that modafinil enhances cognitive control functions in various psychiatric disorders. However, the effects of modafinil on delay discounting and its underlying neural correlates have not been investigated as yet. The aim of the current study was to investigate the effects of modafinil on neural correlates of impulsive decision making in abstinent AD patients and healthy control (HC) subjects.MethodA randomized, double-blind, placebo-controlled, within-subjects cross-over study using functional magnetic resonance imaging (fMRI) was conducted in 14 AD patients and 16 HC subjects. All subjects participated in two fMRI sessions in which they either received a single dose of placebo or 200 mg of modafinil 2 h before the session. During fMRI, subjects completed a delay-discounting task to measure impulsive decision making.ResultsModafinil improved impulsive decision making in AD pateints, which was accompanied by enhanced recruitment of frontoparietal regions and reduced activation of the ventromedial prefrontal cortex. Moreover, modafinil-induced enhancement of functional connectivity between the superior frontal gyrus and ventral striatum was specifically associated with improvement in impulsive decision making.ConclusionsThese findings indicate that modafinil can improve impulsive decision making in AD patients through an enhanced coupling of prefrontal control regions and brain regions coding the subjective value of rewards. Therefore, the current study supports the implementation of modafinil in future clinical trials for AD.


2021 ◽  
pp. jnnp-2020-324478
Author(s):  
Kelly R. Bijanki ◽  
Yagna J. Pathak ◽  
Ricardo A. Najera ◽  
Eric A. Storch ◽  
Wayne K Goodman ◽  
...  

Approximately 2%–3% of the population suffers from obsessive–compulsive disorder (OCD). Several brain regions have been implicated in the pathophysiology of OCD, but their various contributions remain unclear. We examined changes in structural and functional neuroimaging before and after a variety of therapeutic interventions as an index into identifying the underlying networks involved. We identified 64 studies from 1990 to 2020 comparing pretreatment and post-treatment imaging of patients with OCD, including metabolic and perfusion, neurochemical, structural, functional and connectivity-based modalities. Treatment class included pharmacotherapy, cognitive–behavioural therapy/exposure and response prevention, stereotactic lesions, deep brain stimulation and transcranial magnetic stimulation. Changes in several brain regions are consistent and correspond with treatment response despite the heterogeneity in treatments and neuroimaging modalities. Most notable are decreases in metabolism and perfusion of the caudate, anterior cingulate cortex, thalamus and regions of prefrontal cortex (PFC) including the orbitofrontal cortex (OFC), dorsolateral PFC (DLPFC), ventromedial PFC (VMPFC) and ventrolateral PFC (VLPFC). Modulating activity within regions of the cortico-striato-thalamo-cortical system may be a common therapeutic mechanism across treatments. We identify future needs and current knowledge gaps that can be mitigated by implementing integrative methods. Future studies should incorporate a systematic, analytical approach to testing objective correlates of treatment response to better understand neurophysiological mechanisms of dysfunction.


Sign in / Sign up

Export Citation Format

Share Document