scholarly journals Genetically predicted complement component 4A expression: effects on memory function and middle temporal lobe activation

2018 ◽  
Vol 48 (10) ◽  
pp. 1608-1615 ◽  
Author(s):  
G. Donohoe ◽  
J. Holland ◽  
D. Mothersill ◽  
S. McCarthy-Jones ◽  
D. Cosgrove ◽  
...  

AbstractBackgroundThe longstanding association between the major histocompatibility complex (MHC) locus and schizophrenia (SZ) risk has recently been accounted for, partially, by structural variation at the complement component 4 (C4) gene. This structural variation generates varying levels ofC4RNA expression, and genetic information from the MHC region can now be used to predictC4RNA expression in the brain. Increased predictedC4ARNA expression is associated with the risk of SZ, andC4is reported to influence synaptic pruning in animal models.MethodsBased on our previous studies associating MHC SZ risk variants with poorer memory performance, we tested whether increased predictedC4ARNA expression was associated with reduced memory function in a large (n= 1238) dataset of psychosis cases and healthy participants, and with altered task-dependent cortical activation in a subset of these samples.ResultsWe observed that increased predictedC4ARNA expression predicted poorer performance on measures of memory recall (p= 0.016, corrected). Furthermore, in healthy participants, we found that increased predictedC4ARNA expression was associated with a pattern of reduced cortical activity in middle temporal cortex during a measure of visual processing (p< 0.05, corrected).ConclusionsThese data suggest that the effects ofC4on cognition were observable at both a cortical and behavioural level, and may represent one mechanism by which illness risk is mediated. As such, deficits in learning and memory may represent a therapeutic target for new molecular developments aimed at alteringC4’s developmental role.

2020 ◽  
Author(s):  
Anders M Fjell ◽  
Øystein Sørensen ◽  
Inge K Amlien ◽  
David Bartrés-Faz ◽  
Andreas M Brandmaier ◽  
...  

Abstract We examined whether sleep quality and quantity are associated with cortical and memory changes in cognitively healthy participants across the adult lifespan. Associations between self-reported sleep parameters (Pittsburgh Sleep Quality Index, PSQI) and longitudinal cortical change were tested using five samples from the Lifebrain consortium (n = 2205, 4363 MRIs, 18–92 years). In additional analyses, we tested coherence with cell-specific gene expression maps from the Allen Human Brain Atlas, and relations to changes in memory performance. “PSQI # 1 Subjective sleep quality” and “PSQI #5 Sleep disturbances” were related to thinning of the right lateral temporal cortex, with lower quality and more disturbances being associated with faster thinning. The association with “PSQI #5 Sleep disturbances” emerged after 60 years, especially in regions with high expression of genes related to oligodendrocytes and S1 pyramidal neurons. None of the sleep scales were related to a longitudinal change in episodic memory function, suggesting that sleep-related cortical changes were independent of cognitive decline. The relationship to cortical brain change suggests that self-reported sleep parameters are relevant in lifespan studies, but small effect sizes indicate that self-reported sleep is not a good biomarker of general cortical degeneration in healthy older adults.


2017 ◽  
Vol 24 (3) ◽  
pp. 213-223 ◽  
Author(s):  
Chelsea C. Hays ◽  
Zvinka Z. Zlatar ◽  
Laura Campbell ◽  
M.J. Meloy ◽  
Christina E. Wierenga

AbstractObjectives: Subjective cognitive decline (SCD), or self-reported cognitive decline despite normal neuropsychological test performance, is a risk factor for objective cognitive decline and Alzheimer’s disease (AD). While brain mechanisms contributing to SCD are not well defined, studies show associations with vascular risk factors and altered cerebral blood flow (CBF), raising the hypothesis that those with SCD might be experiencing vascular dysregulation, or a disruption in the normal relationship between CBF and cognition. We examined whether the association between CBF and verbal memory performance differs between those with SCD (SCD+) and those without SCD (SCD-). Methods: Linear mixed-effects models were used to investigate whether the voxel-wise relationship between arterial spin labeling (ASL) MRI-measured CBF and verbal memory performance was modified by SCD among a group of 70 cognitively normal older adults (35 SCD+, 35 SCD-; mean age=72) matched on age, gender, and symptoms of depression. Results: Results indicated that the SCD- group exhibited positive associations between verbal memory and CBF within the posterior cingulate cortex, middle temporal gyrus, and inferior frontal gyrus, whereas the SCD+ group displayed negative associations between verbal memory and CBF within the posterior cingulate cortex, middle temporal gyrus, hippocampus, fusiform gyrus, and inferior frontal gyrus. Conclusions: Findings suggest that, while higher CBF is supportive of memory function in those without SCD, higher CBF may no longer support memory function in those presenting with SCD, perhaps reflecting neurovascular dysregulation. (JINS, 2018, 24, 213–223)


GeroPsych ◽  
2014 ◽  
Vol 27 (4) ◽  
pp. 161-169 ◽  
Author(s):  
Nienke A. Hofrichter ◽  
Sandra Dick ◽  
Thomas G. Riemer ◽  
Carsten Schleussner ◽  
Monique Goerke ◽  
...  

Hippocampal dysfunction and deficits in episodic memory have been reported for both Alzheimer’s disease (AD) and major depressive disorder (MDD). Primacy performance has been associated with hippocampus-dependent episodic memory, while recency may reflect working memory performance. In this study, serial position profiles were examined in a total of 73 patients with MDD, AD, both AD and MDD, and healthy controls (HC) by means of CERAD-NP word list memory. Primacy performance was most impaired in AD with comorbid MDD, followed by AD, MDD, and HC. Recency performance, on the other hand, was comparable across groups. These findings indicate that primacy in AD is impaired in the presence of comorbid MDD, suggesting additive performance decrements in this specific episodic memory function.


2019 ◽  
Author(s):  
Steve M. J. Janssen

People tend to recall more specific personal events from adolescence and early adulthood than from other lifetime periods, a finding known as the reminiscence bump. Several explanations have suggested that events from the reminiscence bump are especially emotional, important, or positive, but studies using cue words have not found support for these claims. An alternative account postulates that cognitive abilities function optimally in adolescence and early adulthood, which may cause more memories to be stored in those lifetime periods. Although other studies have previously discussed the cognitive abilities account as a possible explanation for the reminiscence bump, it was only recently shown that cognitive abilities are indeed related to autobiographical memory performance. When this recent finding is combined with previous findings that cognitive abilities as well as autobiographical memory function optimally in adolescence and early adulthood, they suggest that the cognitive abilities account is a promising explanation for the reminiscence bump in the temporal distribution of word-cued memories. However, because the account does not aim to explain the reminiscence bump in the distribution of highly significant events, it should be regarded as complementary to the existing accounts.


Author(s):  
Mohammad S.E Sendi ◽  
Godfrey D Pearlson ◽  
Daniel H Mathalon ◽  
Judith M Ford ◽  
Adrian Preda ◽  
...  

Although visual processing impairments have been explored in schizophrenia (SZ), their underlying neurobiology of the visual processing impairments has not been widely studied. Also, while some research has hinted at differences in information transfer and flow in SZ, there are few investigations of the dynamics of functional connectivity within visual networks. In this study, we analyzed resting-state fMRI data of the visual sensory network (VSN) in 160 healthy control (HC) subjects and 151 SZ subjects. We estimated 9 independent components within the VSN. Then, we calculated the dynamic functional network connectivity (dFNC) using the Pearson correlation. Next, using k-means clustering, we partitioned the dFNCs into five distinct states, and then we calculated the portion of time each subject spent in each state, that we termed the occupancy rate (OCR). Using OCR, we compared HC with SZ subjects and investigated the link between OCR and visual learning in SZ subjects. Besides, we compared the VSN functional connectivity of SZ and HC subjects in each state. We found that this network is indeed highly dynamic. Each state represents a unique connectivity pattern of fluctuations in VSN FNC, and all states showed significant disruption in SZ. Overall, HC showed stronger connectivity within the VSN in states. SZ subjects spent more time in a state in which the connectivity between the middle temporal gyrus and other regions of VNS is highly negative. Besides, OCR in a state with strong positive connectivity between middle temporal gyrus and other regions correlated significantly with visual learning scores in SZ.


2019 ◽  
Author(s):  
Rodika Sokoliuk ◽  
Sara Calzolari ◽  
Damian Cruse

AbstractThe notion of semantic embodiment posits that concepts are represented in the same neural sensorimotor systems that were involved in their acquisition. However, evidence in support of embodied semantics – in particular the hypothesised contribution of motor and premotor cortex to the representation of action concepts – is varied. Here, we tested the hypothesis that, consistent with semantic embodiment, sensorimotor cortices will rapidly become active while healthy participants access the meaning of visually-presented motor and non-motor action verbs. Event-related potentials revealed early differential processing of motor and non-motor verbs (164-203ms) within distinct regions of cortex likely reflecting rapid cortical activation of differentially distributed semantic representations. However, we found no evidence for a specific role of sensorimotor cortices in supporting these representations. Moreover, we observed a later modulation of the alpha band (8-12Hz) from 555-785ms over central electrodes, with estimated generators within the left superior parietal lobule, which may reflect post-lexical activation of the object-directed features of the motor action concepts. In conclusion, we find no evidence for a specific role of sensorimotor cortices when healthy participants judge the meaning of visually-presented action verbs. However, the relative contribution of sensorimotor cortices to action comprehension may vary as a function of task goals.


2020 ◽  
Vol 32 (10) ◽  
pp. 1896-1923
Author(s):  
Avinash R. Vaidya ◽  
David Badre

Real-life choices often require that we draw inferences about the value of options based on structured, schematic knowledge about their utility for our current goals. Other times, value information may be retrieved directly from a specific prior experience with an option. In an fMRI experiment, we investigated the neural systems involved in retrieving and assessing information from different memory sources to support value-based choice. Participants completed a task in which items could be conferred positive or negative value based on schematic associations (i.e., schema value) or learned directly from experience via deterministic feedback (i.e., experienced value). We found that ventromedial pFC (vmPFC) activity correlated with the influence of both experience- and schema-based values on participants' decisions. Connectivity between the vmPFC and middle temporal cortex also tracked the inferred value of items based on schematic associations on the first presentation of ingredients, before any feedback. In contrast, the striatum responded to participants' willingness to bet on ingredients as a function of the unsigned strength of their memory for those options' values. These results argue that the striatum and vmPFC play distinct roles in memory-based value judgment and decision-making. Specifically, the vmPFC assesses the value of options based on information inferred from schematic knowledge and retrieved from prior direct experience, whereas the striatum controls a decision to act on options based on memory strength.


2019 ◽  
Vol 46 (3) ◽  
pp. 562-571 ◽  
Author(s):  
Li Kong ◽  
Christina J Herold ◽  
Eric F C Cheung ◽  
Raymond C K Chan ◽  
Johannes Schröder

Abstract Neurological soft signs (NSS) are often found in patients with schizophrenia. A wealth of neuroimaging studies have reported that NSS are related to disturbed cortical-subcortical-cerebellar circuitry in schizophrenia. However, the association between NSS and brain network abnormalities in patients with schizophrenia remains unclear. In this study, the graph theoretical approach was used to analyze brain network characteristics based on structural magnetic resonance imaging (MRI) data. NSS were assessed using the Heidelberg scale. We found that there was no significant difference in global network properties between individuals with high and low levels of NSS. Regional network analysis showed that NSS were associated with betweenness centrality involving the inferior orbital frontal cortex, the middle temporal cortex, the hippocampus, the supramarginal cortex, the amygdala, and the cerebellum. Global network analysis also demonstrated that NSS were associated with the distribution of network hubs involving the superior medial frontal cortex, the superior and middle temporal cortices, the postcentral cortex, the amygdala, and the cerebellum. Our findings suggest that NSS are associated with alterations in topological attributes of brain networks corresponding to the cortical-subcortical-cerebellum circuit in patients with schizophrenia, which may provide a new perspective for elucidating the neural basis of NSS in schizophrenia.


1991 ◽  
Vol 3 (1) ◽  
pp. 9-24 ◽  
Author(s):  
M. H. Harries ◽  
D. I. Perrett

Physiological recordings along the length of the upper bank of the superior temporal sulcus (STS) revealed cells each of which was selectively responsive to a particular view of the head and body. Such cells were grouped in large patches 3-4 mm across. The patches were separated by regions of cortex containing cells responsive to other stimuli. The distribution of cells projecting from temporal cortex to the posterior regions of the inferior parietal lobe was studied with retrogradely transported fluorescent dyes. A strong temporoparietal projection was found originating from the upper bank of the STS. Cells projecting to the parietal cortex occurred in large patches or bands. The size and periodicity of modules defined through anatomical connections matched the functional subdivisions of the STS cortex involved in face processing evident in physiological recordings. It is speculated that the temporoparietal projections could provide a route through which temporal lobe analysis of facial signals about the direction of others' attention can be passed to parietal systems concerned with spatial awareness.


2010 ◽  
Vol 22 (6) ◽  
pp. 1224-1234 ◽  
Author(s):  
Aaron M. Rutman ◽  
Wesley C. Clapp ◽  
James Z. Chadick ◽  
Adam Gazzaley

Selective attention confers a behavioral benefit on both perceptual and working memory (WM) performance, often attributed to top–down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography to study the temporal dynamics of top–down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 msec) event-related potential during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory.


Sign in / Sign up

Export Citation Format

Share Document