Chemical Control of Reed Canarygrass on Irrigation Canals

Weed Science ◽  
1968 ◽  
Vol 16 (4) ◽  
pp. 465-468 ◽  
Author(s):  
J. M. Hodgson

From 1962 to 1967, we evaluated herbicides for control of natural infestations of reed canarygrass (Phalaris arundinacea L.) on canal banks of the Huntley, Montana irrigation project. Two,2-dichloropropionic acid (dalapon) and 3-amino-1,2,4-triazole ammonium thiocyanate (hereinafter referred to as amitrole-T) controlled reed canarygrass. These herbicides were compared with a number of others. Spring foliage treatments with a combination of amitrole-T at 2 1b/A and dalapon or trichloroacetic acid (TCA) at 5 or 10 1b/A were more effective than amitrole-T at 4 1b/A. Amitrole-T was more tolerant to fine grasses such as Kentucky bluegrass (Poa pratensis L.) or redtop (Agrostis alba L.) than dalapon and in some situations it was more desirable than dalapon. Dalapon and TCA were more effective as late fall or early winter treatments to control reed canarygrass during the following growing season. Rates of 20 or 40 1b/A controlled the grass for one season even at the water's edge where it is usually more persistent. At 5 to 10 1b/A, 2,3,5-trichloro-4-pyridinol (pyriclor) controlled reed canarygrass, and it also was effective at 2 1b/A with 2 1b/A of amitrole-T.

Weed Science ◽  
1973 ◽  
Vol 21 (5) ◽  
pp. 421-423
Author(s):  
J. M. Hodgson

Herbicides were evaluated for selectivity between three tall coarse grasses and three short fine grasses. Reed canarygrass (Phalaris arundinaceaL.), quackgrass [Agropyron repens(L.) Beauv.], and smooth brome (Bromus inermisLeyss) were consistently more susceptible to amitrole-NH4CN (3-amino-s-triazole-ammonium thiocyanate) than three desirable short grasses, Kentucky bluegrass (Poa pratensisL.), creeping red fescue (Festuca rubraL.), and redtop (Agrostis albaL.). Reed canarygrass and redtop were more susceptible to dalapon (2,2-dichloropropionic acid) than creeping red fescue. Amitrole-NH4CN and dalapon combinations were more toxic to reed canarygrass, smooth brome, and redtop than creeping red fescue. Pyriclor (2,3,5-trichloro-4-pyridinol) was quite toxic to all grasses with Kentucky bluegrass showing the most tolerance. When TCA (trichloroacetic acid) was combined with amitrole-NH4CN results were similar to the dalapon combination but overall toxicity was reduced.


2005 ◽  
Vol 85 (2) ◽  
pp. 351-360 ◽  
Author(s):  
D. B. McKenzie ◽  
Y. A. Papadopoulos ◽  
K. B. McRae ◽  
E. Butt

Kentucky bluegrass, meadow fescue, orchardgrass, tall fescue, timothy, and reed canarygrass were seeded in all possible two-grass combinations with white clover in conventional and underseeded barley treatments using a split-plot design at the Western Agriculture Centre near Pynn’s Brook, NL. The objectives were: (1) to assess dry matter yield (DMY) of two binary grass species when sown with white clover in mixtures under a system with cuttings at similar crop growth stages as rotational grazing and to assess the effect of underseeding to barley on this system; (2) to identify mixtures that enhance herbage distribution throughout the grazing season; and (3) to assess the sward dynamics over successive cropping seasons. The composition of the binary grass mixtures with white clover affected seasonal DMY, seasonal herbage distribution, and sward dynamics over the production years. Orchardgrass in mixtures decreased DMY, shifted the herbage distribution toward early season, and competed with other species. Timothy composition of the stand showed the largest decline over the 3 production years, whereas white clover declined in mixtures with bluegrass, orchardgrass, or tall fescue. Meadow fescue and reed canarygrass with white clover was the most productive mixture with excellent persistence and good yield distribution over the growing season. Orchardgrass was the least compatible species in the mixtures; it dominated first growth and contributed the least to biomass production in later years. Both bluegrass and reed canarygrass performed well in mixtures over the 3 production years; bluegrass appeared to enhance the performance of the other species during summer regrowth whereas reed canarygrass was superior in the later part of the growing season. Underseeding with barley did not affect white clover yield in any production year but detrimentally affected the yield of orchardgrass and meadow fescue in mixtures, and their seasonal distribution. Key words: Bluegrass, orchardgrass, meadow fescue, tall fescue, timothy, reed canarygrass, repeated measurements, principal component analysis, herbage DM distribution, species competition


1984 ◽  
Vol 64 (2) ◽  
pp. 369-374 ◽  
Author(s):  
S. H. NELSON

Ammonium nitrate (34-0-0) at varying rates and frequency of application was applied to established Kentucky bluegrass (Poa pratensis L.) between 15 May and 15 Aug. during 1980 and 1981. The area received a single annual application of triple super-phosphate (0-45-0). Color scores were taken weekly, spring and fall, but only monthly during the summer. Oven-dry clipping yields were determined weekly during the growing season and roots were harvested to a depth of 45 cm at the end of the trial. A rate as low as 0.8 kg N∙100 m−2 per season gave satisfactory low maintenance color during summer, but even minimal color response in spring and fall required a rate of at least 1.25 kg N∙100 m−2. Nitrogen amounts greater than 2.5 kg∙100 m−2 per season were considered excessive although color continued to increase up to the 5-kg rate before the effect started to level off. Yield showed essentially the same trend. Split applications did not appreciably affect overall yield, but are recommended to reduce growth surges from the heavier application. Very poor color and growth effects were noted at rates below 0.8 kg N∙100 m−2 per season as was evident in both yield and color. Root growth was inversely affected by nitrogen. Root growth declined markedly as the rates increased from 0.8 kg N to 3.33 kg N∙100 m−2 season then declined at a reduced rate.Key words: Kentucky bluegrass, Poa pratensis, nitrogen, color, yield, roots, minimum maintenance


1986 ◽  
Vol 66 (3) ◽  
pp. 601-608 ◽  
Author(s):  
B. E. GUDLEIFSSON ◽  
C. J. ANDREWS ◽  
H. BJORNSSON

A number of forage grass species were tested for cold hardiness and ice tolerance after growth and cold hardening under controlled conditions. Tests exposing cold-hardened plants to a single level of stress separated species into statistically similar groups but, in a number of cases, the stress was not sufficient to kill plants so the true cultivar rankings were obscured. Derivation of the 50% kill point from a wide range of levels of stress served to identify cold hardiness and ice tolerance levels of cultivars of 10 species. Ranked according to the most hardy cultivar of the species tested were: timothy (Phleum pratense L.), Kentucky bluegrass (Poa pratensis L.), meadow foxtail (Alopecurus pratensis L.), red fescue (Festuca rubra L.), meadow fescue (Festuca pratensis L.), tufted hairgrass (Deschampsia caespitosa L.), creeping foxtail (Alopecurus arundinaceus L.), berings hairgrass (Deschampsia beringensis L.), orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinaceae). LT50 values varied from −15.7 °C for timothy to −4.7 °C for reed canarygrass. Cold hardiness and ice tolerance were only loosely associated (r = 0.36). The most ice-tolerant species were berings and tufted hairgrasses and timothy with LI50 values of 50, 39 and 44 d, respectively.Key words: Acclimation, encasement, freezing, resistance


HortScience ◽  
2002 ◽  
Vol 37 (7) ◽  
pp. 1124-1126 ◽  
Author(s):  
Darin W. Lickfeldt ◽  
Thomas B. Voigt ◽  
Andrew M. Hamblin

Kentucky bluegrass (Poa pratensis L.) cultivars are often blended to incorporate diverse characteristics. Factors that may contribute to the actual cultivar composition have not been evaluated. Through the use of DNA markers, individual plants in blended stands can be identified. This study evaluated changes in cultivar composition of `Blacksburg', `Midnight', and `Unique' Kentucky bluegrass blends. Characteristics such as seed size, seed moisture content, percent germination, and seedling development did not affect the initial composition of blends at time of seeding. DNA markers were used to demonstrate how the composition of a blended `Blacksburg', `Midnight', and `Unique' turf changed during the first growing season following establishment. The composition of blends did not significantly change from time of seeding in Sept. 1999 to Apr. 2000 or from Apr. 2000 to Oct. 2000. Two of the three blends were significantly different by Oct. 2000 relative to the percentages seeded in Sept. 1999.


Weed Science ◽  
1986 ◽  
Vol 34 (1) ◽  
pp. 94-97 ◽  
Author(s):  
Donald L. Wyse ◽  
Laddie J. Elling ◽  
Donald B. White ◽  
Robert L. McGraw

Sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, RO-13-8895 {acetone-O-[d-2-[p-[α,α,α-trifluoro-p-tolyl-oxy]phenoxy] propionyl] oxime}, and KK-80 {4-[4-[4-(trifluoromethyl)phenoxy] phenoxyl]-2-pentenoic} were evaluated for potential use for controlling quackgrass [Agropyron repens(L.) Beauv., # AGRRE] in perennial ryegrass (Lolium perenneL. ‘NK200’), smooth bromegrass (Bromus inermisLeyss. ‘Sac’), orchardgrass (Dactylis glomerataL. ‘Nordstern’), timothy (Phleum pratenseL. ‘Climax’), Kentucky bluegrass (Poa pratensisL. ‘Park’), Reed canarygrass (Phalaris arundinaceaeL. ‘Rise’), meadow fescue (Festuca elatiorL.), and red fescue (Festuca rubraL.). The three herbicides, when applied postemergence at 1.1 kg ai/ha, caused severe injury to all species except red fescue. ‘Pennlawn’, ‘Ruby’, ‘Dawson’, MN67123, MN673, and MN6354 red fescue entries were tolerant to the three herbicides in both greenhouse and field experiments. Sethoxydim and RO-13-8895 effectively controlled quackgrass in Pennlawn red fescue, but KK-80 was not effective.


2012 ◽  
Vol 92 (6) ◽  
pp. 1199-1205 ◽  
Author(s):  
Y. A. Papadopoulos ◽  
M. S. McElroy ◽  
S. A. E. Fillmore ◽  
K. B. McRae ◽  
J. L. Duyinsveld ◽  
...  

Papadopoulos, Y. A., McElroy, M. S., Fillmore, S. A. E., McRae, K. B., Duyinsveld, J. L. and Fredeen, A. H. 2012. Sward complexity and grass species composition affects the performance of grass-white clover pasture mixtures. Can. J. Plant Sci. 92: 1199–1205. The productivity of managed permanent pastures is closely associated with the species composition of seeded mixtures. Ecological theory suggests that increasing plant species' diversity will result in higher productivity, resilience, and resistance to invasive species. To better understand the relationship between sward species composition and pasture productivity, mixtures of four common pasture grass species, timothy (Phleum pratense L.), Kentucky bluegrass (Poa pratensis L.), reed canarygrass (Phalaris arundinacea L.), and meadow fescue (Festuca pratensis L.), were seeded in 2004 in binary (two-grass), tertiary (three-grass), and quaternary (four-grass) combinations with white clover (Trifolium repens L.). Plots were rotationally grazed for 5 yr, with yield determined in the first post-establishment year (2005) and in 3 subsequent production years (2007, 2008, and 2009). Mean dry matter yield (DMY) increased appreciably from post-establishment (3801 kg ha−1) to the production years (6613 kg ha−1). Contrasts revealed significantly higher DMY production in quaternary mixtures versus less complex plots in production years. Repeated measure analysis found significant quadratic trends in DMY for plots containing bluegrass and timothy, showing different patterns of growth between the respective mixtures. Principal component analysis (PCA) of averaged yields over the production years revealed a strong association between seeded grass growth and DMY. This relationship between DMY and seeded grass growth was strongest in swards containing a combination of timothy and bluegrass. In general, the growth of unseeded grasses and forbs increased in mixtures with large proportions of timothy and reed canarygrass. In spite of the fact that mixtures containing timothy and bluegrass were shown to produce high DMY, it appears the aggressiveness of bluegrass suppressed the yield potential of timothy. White clover yields and unseeded grasses/forbs were both significantly lower in mixtures containing bluegrass. Also, the PCA revealed a favourable compatibility between meadow fescue and white clover growth, while bluegrass appears to suppress meadow fescue growth. Results show that species complexity increases sward productivity over the long term, and that the presence of two grass species, in particular (timothy and bluegrass), has considerable influence on DMY.


2011 ◽  
Vol 4 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Matt A. Bahm ◽  
Thomas G. Barnes ◽  
Kent C. Jensen

AbstractSmooth brome and Kentucky bluegrass are introduced cool-season perennial grasses known to invade grasslands throughout North America. During the fall of 2005 and spring of 2006, we implemented a restoration study at six native prairie sites in eastern South Dakota that have been invaded by smooth brome and Kentucky bluegrass. Treatments included five herbicide combinations, a fall prescribed burn, and an untreated control to determine the potential of each for renovation of invaded native grasslands. Herbicide treatments tested were sulfosulfuron, imazapyr, imazapic + sulfosulfuron, and imazapyr + imazapic, and were applied in late September 2005 and mid-May 2006. Untreated control plots averaged 64% (± 3.1) smooth brome cover and 38% (± 5.5) Kentucky bluegrass cover after the third growing season. Smooth brome cover in herbicide treated plots ranged from 6 to 23% and Kentucky bluegrass cover ranged from 15 to 35% after the third growing season. Smooth brome cover was 20% (± 2.9) and Kentucky bluegrass cover was 19% (± 4.0) in burned plots after the third growing season. Spring and fall treatments had similar native plant cover after three growing seasons. Spring and fall application of 0.33 kg ai ha−1 imazapyr and 0.10 kg ai ha−1 imazapic + 0.16 kg ai ha−1 imazapyr had ≤ 10% smooth brome cover and increased native species cover after three growing seasons. Herbicides were effective at reducing cover of smooth brome and Kentucky bluegrass, and can be incorporated with other management strategies to restore prairie remnants.


2020 ◽  
Vol 100 (4) ◽  
pp. 341-356
Author(s):  
Gilles Bélanger ◽  
Gaëtan F. Tremblay ◽  
Yousef A. Papadopoulos ◽  
John Duynisveld ◽  
Julie Lajeunesse ◽  
...  

Complex pasture mixtures are advantageous, but little information exists on the best forage species and nitrogen (N) management in eastern Canada. We compared under mob stocking four complex mixtures of one of two legume species [alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.)] plus one of two grass mixes [No. 1 — timothy (Phleum pratense L.), meadow fescue (Schedonorus pratensis (Huds.) P. Beauv.), reed canarygrass (Phalaris arundinacea L.), and Kentucky bluegrass (Poa pratensis L.); No. 2 — tall fescue (Schedonorus arundinaceus (Schreb.) Dumort., nom. cons.), meadow bromegrass (Bromus biebersteinii Roem. and Schult.), reed canarygrass, and Kentucky bluegrass] under three N application rates at three sites over the first three post-seeding years. Legume species had little effect on most forage attributes mainly because of their low contribution to forage dry matter (DM) yield (<30%) in second and third years. The grass mix with tall fescue and meadow bromegrass (No. 2) yielded similar or slightly better than the one with timothy and meadow fescue (No. 1) but tended to have a greater neutral detergent fibre concentration, and lower N and total digestible nutrient concentrations. Nitrogen fertilization increased forage DM yield only in second and third years when the legume contribution to forage DM yield was <30%, and it increased N concentration and decreased nonstructural carbohydrate concentration. These results highlight the challenge of maintaining legume species in rotationally grazed pastures of eastern Canada and confirm recommendations of applying no or little N fertilizer on grazed legume–grass mixtures when the legume contribution to forage DM yield is >30%.


1990 ◽  
Vol 70 (2) ◽  
pp. 601-610 ◽  
Author(s):  
N. F. CYMBALUK

Two trials compared digestion of Saskatchewan-grown hays by cattle and horses. In the first study, Altai wildrye (Leysum angustus Trin.), smooth bromegrass (Bromus inermus Leyss.), crested wheatgrass (Agropyron cristatum L.), Kentucky bluegrass (Poa pratensis L.), oat hay (Avena sativa L.) and reed canarygrass (Phalaris arundinaceae L.) hays were fed to six beef steers and six crossbred geldings. The second study compared alfalfa hay (Medicago sativa L.) to dehydrated alfalfa pellets. Voluntary dry matter intake (VDMI) of hay by cattle was related to neutral detergent fiber content (R2 = 0.66). No single nutrient reliably predicted VDMI by horses. Cattle and horses had the highest VDMI for bromegrass hay in trial 1. Cattle had similar intakes of dehydrated alfalfa pellets and alfalfa hay, but horses ate 17% more (P < 0.05) hay than pellets. Cattle digested 28–82% more (P < 0.05) fiber from grass hays than horses which may account for their higher dry matter (DM) digestion of these hays. Cattle and horses utilized legume feeds similarly. Energy intakes of all animals exceeded maintenance except for cattle fed reed canarygrass hay. True crude protein digestibility and metabolic fecal protein of forage-fed cattle and horses were estimated at 83.4 and 80.3%, and 2.67 and 2.17 g 100 g−1 DM intake, respectively. Horses had higher true digestibilities of Ca (75%) than P (33%) but cattle digested more P (76%) than Ca (32%). Endogenous fecal Ca excretion for cattle and horses were assessed at 6.5 and 22.1 mg kg−1 body weight (BW), respectively, while endogenous fecal P excretions were 13.3 and 10.2 mg kg−1 BW, respectively. Key words: Horse, cattle, legume, grass, crude protein, fiber


Sign in / Sign up

Export Citation Format

Share Document