scholarly journals Evolution of massive common envelope binaries and mass loss

1979 ◽  
Vol 83 ◽  
pp. 401-407 ◽  
Author(s):  
A. Tutukov ◽  
L. Yungelson

A way of treatment of evolution of common envelope binaries based only on the laws of conservation of energy and angular momentum is suggested. It is shown that the final configuration depends on masses of components and initial period of the system, and on parameters describing friction in the envelope, and mass loss by the system. Possible final stages for massive binaries are either a Thorne-Zytkow type object for initially close binaries or a Wolf-Rayet star in pair with a relativistic compact remnant for wider ones. In the course of disruption of the latter system with orbital periods up to several hours very high space velocity (up to 500 km/s) pulsars can arise.

1979 ◽  
Vol 83 ◽  
pp. 383-399
Author(s):  
Janusz Ziółkowski

Three situations involving mass loss from binary systems are discussed. (1) Non-conservative mass exchange in semi-detached binaries. No quantitative estimate of this mechanism is possible at present. (2) Common envelope binaries. There are both theoretical and observational indications that this phase of evolution happens to many systems, even to some that are not very close initially (orbital periods ~ years). (3) Stellar winds in binaries. Observational evidence suggests that stellar winds from components of close binaries (especially semi-detached) are significantly stronger than from single stars at the same location in the H-R diagram. Theoretical arguments indicate that in some cases stellar wind may stabilize the component of a binary against the Roche lobe overflow. In some cases there is weak evidence of an anisotropy in the stellar wind.


2017 ◽  
Vol 26 (1) ◽  
Author(s):  
David Bogensberger ◽  
Fraser Clarke ◽  
Anthony Eugene Lynas-Gray

AbstractSeveral post-common envelope binaries have slightly increasing, decreasing or oscillating orbital periods. One of several possible explanations is light travel-time changes, caused by the binary centre-of-mass being perturbed by the gravitational pull of a third body. Further studies are necessary because it is not clear how a third body could have survived subdwarf progenitor mass-loss at the tip of the Red Giant Branch, or formed subsequently. Thirty-nine primary eclipse times for V470 Cam were secured with the Philip Wetton Telescope during the period 2016 November 25


2019 ◽  
Vol 490 (4) ◽  
pp. 5560-5566 ◽  
Author(s):  
A Miguel Holgado ◽  
Paul M Ricker

ABSTRACT Some fraction of compact binaries that merge within a Hubble time may have formed from two massive stars in isolation. For this isolated-binary formation channel, binaries need to survive two supernova (SN) explosions in addition to surviving common-envelope evolution. For the SN explosions, both the mass loss and natal kicks change the orbital characteristics, producing either a bound or unbound binary. We show that gravitational waves (GWs) may be produced not only from the core-collapse SN process, but also from the SN mass loss and SN natal kick during the pre-SN to post-SN binary transition. We model the dynamical evolution of a binary at the time of the second SN explosion with an equation of motion that accounts for the finite time-scales of the SN mass loss and the SN natal kick. From the dynamical evolution of the binary, we calculate the GW burst signals associated with the SN natal kicks. We find that such GW bursts may be of interest to future mid-band GW detectors like DECIGO. We also find that the energy radiated away from the GWs emitted due to the SN mass loss and natal kick may be a significant fraction, ${\gtrsim }10{\,{\rm {per\, cent}}}$, of the post-SN binary’s orbital energy. For unbound post-SN binaries, the energy radiated away in GWs tends to be higher than that of bound binaries.


2020 ◽  
Vol 494 (1) ◽  
pp. 1448-1462 ◽  
Author(s):  
Andrei P Igoshev ◽  
Hagai B Perets ◽  
Erez Michaely

ABSTRACT Evolution of close binaries often proceeds through the common envelope stage. The physics of the envelope ejection (CEE) is not yet understood, and several mechanisms were suggested to be involved. These could give rise to different time-scales for the CEE mass-loss. In order to probe the CEE-time-scales we study wide companions to post-CE binaries. Faster mass-loss time-scales give rise to higher disruption rates of wide binaries and result in larger average separations. We make use of data from Gaia DR2 to search for ultrawide companions (projected separations 103–2 × 105 au and M2 > 0.4 M⊙) to several types of post-CEE systems, including sdBs, white dwarf post-common binaries, and cataclysmic variables. We find a (wide-orbit) multiplicity fraction of 1.4 ± 0.2 per cent for sdBs to be compared with a multiplicity fraction of 5.0 ± 0.2 per cent for late-B/A/F stars which are possible sdB progenitors. The distribution of projected separations of ultrawide pairs to main sequence stars and sdBs differs significantly and is compatible with prompt mass-loss (upper limit on common envelope ejection time-scales of 102 yr). The smaller statistics of ultrawide companions to cataclysmic variables and post-CEE binaries provide weaker constraints. Nevertheless, the survival rate of ultrawide pairs to the cataclysmic variables suggest much longer, ∼104 yr time-scales for the CEE in these systems, possibly suggesting non-dynamical CEE in this regime.


RSC Advances ◽  
2016 ◽  
Vol 6 (94) ◽  
pp. 91603-91616 ◽  
Author(s):  
Muhammad Usman ◽  
W. M. A. Wan Daud

Catalytic activity of Ni/MgO catalyst investigated at different Ni content (20, 40 and 80 wt%), calcination (450, 600 and 800 °C) and reduction temperatures (550 and 800 °C) for dry reforming reaction at very high space velocity.


2020 ◽  
Vol 643 ◽  
pp. L1 ◽  
Author(s):  
Julia Venturini ◽  
Octavio M. Guilera ◽  
Jonas Haldemann ◽  
María P. Ronco ◽  
Christoph Mordasini

The existence of a radius valley in the Kepler size distribution stands as one of the most important observational constraints to understand the origin and composition of exoplanets with radii between those of Earth and Neptune. In this work we provide insights into the existence of the radius valley, first from a pure formation point of view and then from a combined formation-evolution model. We run global planet formation simulations including the evolution of dust by coagulation, drift, and fragmentation, and the evolution of the gaseous disc by viscous accretion and photoevaporation. A planet grows from a moon-mass embryo by either silicate or icy pebble accretion, depending on its position with respect to the water ice line. We include gas accretion, type I–II migration, and photoevaporation driven mass-loss after formation. We perform an extensive parameter study evaluating a wide range of disc properties and initial locations of the embryo. We find that due to the change in dust properties at the water ice line, rocky cores form typically with ∼3 M⊕ and have a maximum mass of ∼5 M⊕, while icy cores peak at ∼10 M⊕, with masses lower than 5 M⊕ being scarce. When neglecting the gaseous envelope, the formed rocky and icy cores account naturally for the two peaks of the Kepler size distribution. The presence of massive envelopes yields planets more massive than ∼10 M⊕ with radii above 4 R⊕. While the first peak of the Kepler size distribution is undoubtedly populated by bare rocky cores, as shown extensively in the past, the second peak can host half-rock–half-water planets with thin or non-existent H-He atmospheres, as suggested by a few previous studies. Some additional mechanisms inhibiting gas accretion or promoting envelope mass-loss should operate at short orbital periods to explain the presence of ∼10–40 M⊕ planets falling in the second peak of the size distribution.


2015 ◽  
Vol 2 (1) ◽  
pp. 183-187 ◽  
Author(s):  
L. Y. Zhu ◽  
S. B. Qian ◽  
E.-G. Zhao ◽  
E. Fernández Lajús ◽  
Z.-T. Han

The sdB-type close binaries are believed to have experienced a common-envelope phase and may evolve into cataclysmic binaries (CVs). About 10% of all known sdB binaries are eclipsing binaries consisting of very hot subdwarf primaries and low-mass companions with short orbital periods. The eclipse profiles of these systems are very narrow and deep, which benefits the determination of high precise eclipsing times and makes the detection of small and close-in tertiary bodies possible. Since 2006 we have monitored some sdB-type eclipsing binaries to search for the close-in substellar companions by analyzing the light travel time effect. Here some progresses of the program are reviewed and the formation of sdB-type binary is discussed.


1989 ◽  
Vol 8 ◽  
pp. 155-159
Author(s):  
R. E. Taam

AbstractThe current understanding of the common envelope binary phase of evolution is presented. The results obtained from the detailed computations of the hydrodynamical evolution of this phase demonstrate that the deposition of energy by the double core via frictional processes is sufficiently rapid to drive a mass outflow, primarily in the equatorial plane of the binary system. Specifically, recent calculations suggest that large amounts of mass and angular momentum can be lost from the binary system in a such a phase. Since the time scale for mass loss at the final phase of evolution is much shorter than the orbital decay time scale of the companion, the tranformation of binary systems from long orbital periods (> month) to short orbital periods (< day) is likely. The energy efficiency factor for the process is estimated to lie in the range between 0.3 and 0.6.


1980 ◽  
Vol 88 ◽  
pp. 271-286 ◽  
Author(s):  
Margherita Hack ◽  
Umberto Flora ◽  
Paolo Santin

The common peculiarities of these two systems are: a) the companion is a massive object (probably m2≥10) whose spectrum is not observable; b) both systems show evidence, though in different degrees, of mass-transfer and mass-loss; c) both present, in different degrees, hydrogen deficiency; d) ultraviolet observations have shown, in both cases, the presence of lines of highly ionized elements like N V, C IV, Si IV, probably formed in an extended envelope because they do not show orbital radial velocity shifts, and cannot be explained by the effective temperature of the star whose spectrum we observe. The latter property seems to be common to several close binaries, as shown by the ultraviolet observations with IUE by Plavec and Koch (1979); e) both systems present infrared excess, suggesting the presence of an extended envelope (Gehrz et al. 1974; Lee and Nariai, 1967; Humphreys and Ney, 1974; Treffers et al. 1976).


Sign in / Sign up

Export Citation Format

Share Document