scholarly journals Instabilities in Pressure Confined Beams and Morphology of Extended Radio Sources

1982 ◽  
Vol 97 ◽  
pp. 229-230
Author(s):  
A. Ferrari ◽  
S. Massaglia ◽  
E. Trussoni ◽  
L. Zaninetti

Several authors have suggested that radio jet morphologies resolved in extragalactic sources are the effects of large-scale Kelvin-Helmholtz instabilities in high-speed, pressure-confined fluid beams ejected from parent active galactic nuclei (Ferrari et al. 1978, 1979, 1981; Hardee 1979;Benford et al. 1980). In particular results from studies for cylindrical geometries indicate how to connect the “wiggles” (observed in 3C449, NGC 6251, M87 and Cen A) with helical perturbations and the “knots” (observed in NGC 315, M87, Cen Aetc.) with pinching modes. Correspondingly small scale MHD perturbations, generated by the same instability or nonlinear cascade processes, are efficient in accelerating relativistic electrons via stochastic scatterings (Lacombe 1977; Ferrari et al. 1979). This picture may satisfy both the requirements for in situ re-acceleration and the intrinsic correlation between morphology and emission.

2000 ◽  
Vol 663 ◽  
Author(s):  
J. Samper ◽  
R. Juncosa ◽  
V. Navarro ◽  
J. Delgado ◽  
L. Montenegro ◽  
...  

ABSTRACTFEBEX (Full-scale Engineered Barrier EXperiment) is a demonstration and research project dealing with the bentonite engineered barrier designed for sealing and containment of waste in a high level radioactive waste repository (HLWR). It includes two main experiments: an situ full-scale test performed at Grimsel (GTS) and a mock-up test operating since February 1997 at CIEMAT facilities in Madrid (Spain) [1,2,3]. One of the objectives of FEBEX is the development and testing of conceptual and numerical models for the thermal, hydrodynamic, and geochemical (THG) processes expected to take place in engineered clay barriers. A significant improvement in coupled THG modeling of the clay barrier has been achieved both in terms of a better understanding of THG processes and more sophisticated THG computer codes. The ability of these models to reproduce the observed THG patterns in a wide range of THG conditions enhances the confidence in their prediction capabilities. Numerical THG models of heating and hydration experiments performed on small-scale lab cells provide excellent results for temperatures, water inflow and final water content in the cells [3]. Calculated concentrations at the end of the experiments reproduce most of the patterns of measured data. In general, the fit of concentrations of dissolved species is better than that of exchanged cations. These models were later used to simulate the evolution of the large-scale experiments (in situ and mock-up). Some thermo-hydrodynamic hypotheses and bentonite parameters were slightly revised during TH calibration of the mock-up test. The results of the reference model reproduce simultaneously the observed water inflows and bentonite temperatures and relative humidities. Although the model is highly sensitive to one-at-a-time variations in model parameters, the possibility of parameter combinations leading to similar fits cannot be precluded. The TH model of the “in situ” test is based on the same bentonite TH parameters and assumptions as for the “mock-up” test. Granite parameters were slightly modified during the calibration process in order to reproduce the observed thermal and hydrodynamic evolution. The reference model captures properly relative humidities and temperatures in the bentonite [3]. It also reproduces the observed spatial distribution of water pressures and temperatures in the granite. Once calibrated the TH aspects of the model, predictions of the THG evolution of both tests were performed. Data from the dismantling of the in situ test, which is planned for the summer of 2001, will provide a unique opportunity to test and validate current THG models of the EBS.


2018 ◽  
Vol 36 (4) ◽  
pp. 1099-1116
Author(s):  
Gerald A. Lehmacher ◽  
Miguel F. Larsen ◽  
Richard L. Collins ◽  
Aroh Barjatya ◽  
Boris Strelnikov

Abstract. Four mesosphere–lower thermosphere temperature and turbulence profiles were obtained in situ within ∼30 min and over an area of about 100 by 100 km during a sounding rocket experiment conducted on 26 January 2015 at Poker Flat Research Range in Alaska. In this paper we examine the spatial and temporal variability of mesospheric turbulence in relationship to the static stability of the background atmosphere. Using active payload attitude control, neutral density fluctuations, a tracer for turbulence, were observed with very little interference from the payload spin motion, and with high precision (<0.01 %) at sub-meter resolution. The large-scale vertical temperature structure was very consistent between the four soundings. The mesosphere was almost isothermal, which means more stratified, between 60 and 80 km, and again between 88 and 95 km. The stratified regions adjoined quasi-adiabatic regions assumed to be well mixed. Additional evidence of vertical transport and convective activity comes from sodium densities and trimethyl aluminum trail development, respectively, which were both observed simultaneously with the in situ measurements. We found considerable kilometer-scale temperature variability with amplitudes of 20 K in the stratified region below 80 km. Several thin turbulent layers were embedded in this region, differing in width and altitude for each profile. Energy dissipation rates varied between 0.1 and 10 mW kg−1, which is typical for the winter mesosphere. Very little turbulence was observed above 82 km, consistent with very weak small-scale gravity wave activity in the upper mesosphere during the launch night. On the other hand, above the cold and prominent mesopause at 102 km, large temperature excursions of +40 to +70 K were observed. Simultaneous wind measurements revealed extreme wind shears near 108 km, and combined with the observed temperature gradient, isolated regions of unstable Richardson numbers (0<Ri<0.25) were detected in the lower thermosphere. The experiment was launched into a bright auroral arc under moderately disturbed conditions (Kp∼5).


2020 ◽  
Vol 10 (24) ◽  
pp. 8804
Author(s):  
Jhonni Rahman ◽  
Yutaka Shoukaku ◽  
Tomoaki Iwai

This study examines the relationship between rubber-wheel and the contact area on the road surface. Ultraviolet-induced fluorescence microscopy was used to observe and measure the contact parts with pyranine as a dye solution. The high sensitivity to U.V. light makes it easy to distinguish contact and non-contact regions on a very small scale. The experiment was conducted in static and dynamic conditions to identify its influence on the apparent contact area of rubber-wheel and road surface. The in-situ observation of the contact area was captured and recorded using a high-speed digital camera with 1-inch a CMOS (complementary metal oxide semiconductor) sensor. Additionally, the contact area between rubber-wheel and road surface was measured using an analyzing software. The results show differences in static and dynamic contact conditions based on the operating parameters.


1986 ◽  
Vol 108 (3) ◽  
pp. 455-461
Author(s):  
J. C. Wambold ◽  
J. J. Henry

It is generally agreed that the friction between a tire and a wet pavement (skid resistance) is controlled by the surface texture characteristics. Therefore, by measuring the relevant parameters describing texture, or by measuring a physical process dependent on texture, regression techniques can be used to relate skid resistance to the chosen texture parameter or process. Two scales of texture are of particular importance: microtexture (small-scale asperities) and macrotexture (large-scale asperities). This paper describes work performed to: (1) review candidate macrotexture and microtexture measurement methods that can be made at highway speeds (at or about 64 km/h [40 mph]), which are presently used or have potential for use in pavement texture measurement; (2) design and build a prototype of the most promising method; and (3) evaluate the effects of pavement surface texture on skid resistance. A prototype noncontact vision system that makes texture measurements at highway speeds was developed, and several improvements were made to upgrade the system to provide an improved prototype. Both hardware and software enhancements have yielded a texture measurement system that can obtain pavement macrotexture data in a fast, efficient, and reliable way.


1981 ◽  
Vol 94 ◽  
pp. 373-391
Author(s):  
Gerhard Haerendel

Two processes are discussed which violate the frozen-in condition in a highly conducting plasma, reconnection and the auroral acceleration process. The first applies to situations in which . It plays an important role in the interaction of the solar wind with the Earth's magnetic field and controls energy input into as well as energetic particle release from the magnetosphere. Detailed in situ studies of the process on the dayside magnetopause reveal its transient and small-scale nature. The auroral acceleration process occurs in the low magnetosphere (β « 1) and accompanies sudden releases of magnetic shear stresses which exist in large-scale magnetospheric-ionospheric current circuits. The process is interpreted as a kind of breaking. The movements of the magnetospheric plasma which lead to a relief of the magnetic tensions occur in thin sheets and are decoupled along the magnetic field lines by parallel electric potential drops. It is this voltage that accelerates the primary auroral particles. The visible arcs are then traces of the magnetic breaking process at several 1000 km altitude.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guoqing Chen ◽  
Yan Zhang ◽  
Runqiu Huang ◽  
Fan Guo ◽  
Guofeng Zhang

Acoustic emission (AE) technique is widely used in various fields as a reliable nondestructive examination technology. Two experimental tests were carried out in a rock mechanics laboratory, which include (1) small scale direct shear tests of rock bridge with different lengths and (2) large scale landslide model with locked section. The relationship of AE event count and record time was analyzed during the tests. The AE source location technology and comparative analysis with its actual failure model were done. It can be found that whether it is small scale test or large scale landslide model test, AE technique accurately located the AE source point, which reflected the failure generation and expansion of internal cracks in rock samples. Large scale landslide model with locked section test showed that rock bridge in rocky slope has typical brittle failure behavior. The two tests based on AE technique well revealed the rock failure mechanism in rocky slope and clarified the cause of high speed and long distance sliding of rocky slope.


1989 ◽  
Vol 111 (2) ◽  
pp. 204-210 ◽  
Author(s):  
A. Kubota ◽  
H. Kato ◽  
H. Yamaguchi ◽  
M. Maeda

The structure of flow around unsteady cloud cavitation on a stationary two-dimensional hydrofoil was investigated experimentally using a conditional sampling technique. The unsteady flow velocity around the cloud cavitation was measured by a Laser Doppler Anemometry (LDA) and matched with the unsteady cavitation appearance photographed by a high-speed camera. This matching procedure was performed using data from pressure fluctuation measurements on the foil surface. The velocities were divided into two components using a digital filter, i.e., large-scale (low-frequency) and small-scale (high frequency) ones. The large-scale component corresponds with the large-scale unsteady cloud cavitation motion. In this manner, the unsteady structure of the cloud cavitation was successfully measured. The experimental result showed that the cloud cavitation observed at the present experiment had a vorticity extremum at its center and a cluster containing many small cavitation bubbles. The convection velocity of the cavitation cloud was much lower than the uniform velocity. The small-scale velocity fluctuation was not distributed uniformly in the cavitation cloud, but was concentrated near its boundary.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Lianbo Deng ◽  
Jing Xu ◽  
Ningxin Zeng ◽  
Xinlei Hu

This paper studies the multistage pricing and seat allocation problems for multiple train services in a high-speed railway (HSR) with multiple origins and destinations (ODs). Taking the maximum total revenue of all trains as the objective function, a joint optimization model of multistage pricing and seat allocation is established. The actual operation constraints, including train seat capacity constraints, price time constraints in each period, and price space constraints among products, are fully considered. We reformulate the optimization model as a bilevel multifollower programming model in which the upper-level model solves the seat allocation problem for all trains serving multiple ODs in the whole booking horizon and the lower optimizes the pricing decisions for each train serving each OD in different decision periods. The upper and lower are a large-scale static seat allocation programming and many small-scale multistage dynamic pricing programming which can be solved independently, respectively. The solving difficulty can be significantly reduced by decomposing. Then, we design an effective solution method based on divide-and-conquer strategy. A real instance of the China’s Wuhan-Guangzhou high-speed railway is employed to validate the advantages of the proposed model and the solution method.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Wenzhi Tang ◽  
Hanbin Xiao ◽  
Chentong Chen

Digital image correlation (DIC) is an efficient nondestructive technique for measuring surface displacement in engineering. However, standard DIC is restricted to continuous deformation, and the existing discontinuous DIC (DDIC) techniques are only able to measure small-scale cracks. In this report, a novel subset restore model and a corresponding subset size adaptation algorithm are presented to overcome this limitation for crack-state and displacement field reconstruction for large-scale cracks. The technique introduces a new subset restore method for splicing the segmented subset by tracing the motion trajectory caused by pure discontinuities. The proposed model facilitates the calculation of the rotation angle and the pivot of the subset movement. The subset size adaptation algorithm is designed based on an evaluation of the intensity gradient and correlation coefficient to allow the model to achieve high accuracy. Validation of the approach was performed using two typical crack models, by deforming a numerically synthesized Gaussian speckle image according to the deformation data from finite element analysis (FEA) results and photographing a laboratory tensile test with a high-speed CCD camera, respectively. The results validate the efficacy and high accuracy of the proposed approach compared to standard DIC in the reconstruction of the displacement fields in both continuous and discontinuous regions. The accuracy of resultant displacement reconstruction achieves approximately 0.015 pixels and 0.05 pixels in continuous region and crack vicinity, respectively.


1990 ◽  
Vol 140 ◽  
pp. 400-400
Author(s):  
R. Schlickeiser ◽  
A. Crusius-Wătzel

As an hypothesis the sharp far–infrared turnovers in the spectra of several radio–quiet galactic nuclei [1–3] are attributed to the modifications of synchrotron emission arising from the presence of a thermal background plasma. We calculate the synchrotron emission from a power-law distribution of relativistic electrons N(γ) = Noγ–s in a large–scale random magnetic field of strength B embedded in a thermal plasma of density ne. Two major modifications of the classical vacuum theory of synchrotron emission are established [4]:A) synchrotron sources can be optically thick only in a small frequency range around the Razin -Tsytovich frequency, whereas at smaller and higher frequencies the sources are optically thin;B) at frequencies above VR the synchrotron intensity in a plasma behaves exactly the same way as in the vacuum case, whereas at frequencies below VR the intensity is exponentially reduced,


Sign in / Sign up

Export Citation Format

Share Document