scholarly journals Aplication of A New Observational Strategy to the Study of Gravitational Solar Modes

1998 ◽  
Vol 185 ◽  
pp. 51-52
Author(s):  
I. Martin Mateos ◽  
P.L. Pallé

The aim of the present work is the detection of solar g-modes, making use of their spatial and temporal properties, by means of a new observational strategy. The basic data, gathered at the Observatorio del Teide in 1993, consists on daily solar velocity measurements taken continuous and sequentially at six different and symmetric positions on the solar disk. By correlating the time series obtained from different positions, and considering the geometrical properties of different modes (l, m) on the Sun‘s surface, some of them can selectively be eliminated or enhanced. In particular, the main spectral features present in the resulting power spectra must have precise phase relations if they correspond to global solar g-modes.

Author(s):  
Kevin D. Murphy ◽  
Lawrence N. Virgin ◽  
Stephen A. Rizzi

Abstract Experimental results are presented which characterize the dynamic response of homogeneous, fully clamped, rectangular plates to narrow band acoustic excitation and uniform thermal loads. Using time series, pseudo-phase projections, power spectra and auto-correlation functions, small amplitude vibrations are considered about both the pre- and post-critical states. These techniques are then employed to investigate the snap-through response. The results for snap-through suggest that the motion is temporally complex and a Lyapunov exponent calculation confirms that the motion is chaotic. Finally, a snap-through boundary is mapped in the (ω, SPL) parameter space separating the regions of snap-through and no snap-through.


2007 ◽  
Vol 97 (3) ◽  
pp. 2254-2266 ◽  
Author(s):  
Frederik C. Joelving ◽  
Albert Compte ◽  
Christos Constantinidis

Working memory is mediated by the discharges of neurons in a distributed network of brain areas. It was recently suggested that enhanced rhythmicity in neuronal activity may be critical for sustaining remembered information. To test whether working memory is characterized by unique temporal discharge patterns, we analyzed the autocorrelograms and power spectra of spike trains recorded from the posterior parietal cortex of monkeys performing a visuospatial working-memory task. We compared the intervals of active memory maintenance and fixation and repeated the same analysis in spike trains from monkeys never trained to perform any kind of memory task. The most salient effect we observed was a decrease of power in the 5- to 10-Hz frequency range during the presentation of visual stimuli. This pattern was observed both in the working-memory condition and the control condition, although it was more prominent in the former, where it persisted after cue presentation when the monkeys actively remembered the spatial location of the stimulus. Low-frequency power suppression resulted from relative refractory periods that were significantly longer in the working-memory condition and presumably emerged from local-circuit inhibition. We also detected a spectral peak in the 15- to 20-Hz range, although this was more prominent during fixation than during the stimulus and working-memory periods. Our results are in line with previous reports in prefrontal cortex and indicate that unique temporal patterns of single-neuron firing characterize persistent delay activity, although these do not involve the appearance of enhanced oscillations.


2014 ◽  
Vol 56 (5) ◽  
Author(s):  
Hao Ding ◽  
Wen-Bin Shen

<p>Based upon SG (superconducting gravimeter) records, the autoregressive method proposed by Chao and Gilbert [1980] is used to determine the frequencies of the singlets of seven spheroidal modes (<sub>0</sub>S<sub>2</sub>, <sub>2</sub>S<sub>1</sub>, <sub>0</sub>S<sub>3</sub>, <sub>0</sub>S<sub>4</sub>, <sub>1</sub>S<sub>2</sub>, <sub>0</sub>S<sub>0</sub>, and <sub>3</sub>S<sub>1</sub>) and the degenerate frequencies of three toroidal modes (<sub>0</sub>T<sub>2</sub>, <sub>0</sub>T<sub>3</sub>, and <sub>0</sub>T<sub>4</sub>) below 1 mHz after two recent huge earthquakes, the 2010 Mw8.8 Maule earthquake and the 2011 Mw9.1 Tohoku earthquake. The corresponding quality factor <em>Q</em>s are also determined for those modes, of which the <em>Q</em>s of the five singlets of <sub>1</sub>S<sub>2</sub> and the five singlets (<em>m</em>=0, <em>m</em>=±2, and <em>m</em>=±3) of <sub>0</sub>S<sub>4</sub> are estimated for the first time using the SG observations. The singlet <em>m</em>=0 of <sub>3</sub>S<sub>1</sub> is clearly observed from the power spectra of the SG time series without using other special spectral analysis methods or special time series from pole station records. In addition, the splitting width ratio <em>R</em> of <sub>3</sub>S<sub>1</sub> is 0.99, and consequently we conclude that <sub>3</sub>S<sub>1</sub> is normally split. The frequencies and <em>Q</em>s of the modes below 1mHz may contribute to refining the 3D density and attenuation models of the Earth.</p>


2021 ◽  
Author(s):  
Giovanni Nico ◽  
Pier Francesco Biagi ◽  
Anita Ermini ◽  
Mohammed Yahia Boudjada ◽  
Hans Ulrich Eichelberger ◽  
...  

&lt;p&gt;Since 2009, several radio receivers have been installed throughout Europe in order to realize the INFREP European radio network for studying the VLF (10-50 kHz) and LF (150-300 kHz) radio precursors of earthquakes. Precursors can be related to &amp;#8220;anomalies&amp;#8221; in the night-time behavior of&amp;#160; VLF signals. A suitable method of analysis is the use of the Wavelet spectra.&amp;#160; Using the &amp;#8220;Morlet function&amp;#8221;, the Wavelet transform of a time signal is a complex series that can be usefully represented by its square amplitude, i.e. considering the so-called Wavelet power spectrum.&lt;/p&gt;&lt;p&gt;The power spectrum is a 2D diagram that, once properly normalized with respect to the power of the white noise, gives information on the strength and precise time of occurrence of the various Fourier components, which are present in the original time series. The main difference between the Wavelet power spectra and the Fourier power spectra for the time series is that the former identifies the frequency content along the operational time, which cannot be done with the latter. Anomalies are identified as regions of the Wavelet spectrogram characterized by a sudden increase in the power strength.&lt;/p&gt;&lt;p&gt;On January 30, 2020 an earthquake with Mw= 6.0 occurred in Dodecanese Islands. The results of the Wavelet analysis carried out on data collected some INFREP receivers is compared with the trends of the raw data. The time series from January 24, 2020 till January 31, 2000 was analyzed. The Wavelet spectrogram shows a peak corresponding to a period of 1 day on the days before January 30. This anomaly was found for signals transmitted at the frequencies 19,58 kHz, 20, 27 kHz, 23,40 kHz with an energy in the peak increasing from 19,58 kHz to 23,40 kHz. In particular, the signal at the frequency 19,58 kHz, shows a peak on January 29, while the frequencies 20,27 kHz and 23,40 kHz are characterized by a peak starting on January 28 and continuing to January 29. The results presented in this work shows the perspective use of the Wavelet spectrum analysis as an operational tool for the detection of anomalies in VLF and LF signal potentially related to EQ precursors.&lt;/p&gt;


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Inga Timofejeva ◽  
Kristina Poskuviene ◽  
Maosen Cao ◽  
Minvydas Ragulskis

A simple and effective algorithm for the identification of optimal time delays based on the geometrical properties of the embedded attractor is presented in this paper. A time series synchronization measure based on optimal time delays is derived. The approach is based on the comparison of optimal time delay sequences that are computed for segments of the considered time series. The proposed technique is validated using coupled chaotic Rössler systems.


1999 ◽  
Vol 170 ◽  
pp. 63-67
Author(s):  
I. V. Ilyin ◽  
R. Duemmler

AbstractWe briefly describe the instrumental effects which affect the accuracy of the radial velocity measurements. We have implemented several methods to correct for the instability effects and improve the accuracy of the measurements. These include modifications of the observational strategy and a time-dependent wavelength solution as well as a discussion of the error of the offset from cross-correlation. These methods are applied to observations obtained with the high resolution échelle spectrograph SOFIN mounted at the Cassegrain focus of the alt-azimuth 2.56-m Nordic Optical Telescope, La Palma, Canary Islands.


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 82
Author(s):  
Juan Carlos Rodríguez-Murillo ◽  
Montserrat Filella

Wavelet transform, wavelet spectra, and coherence are popular tools for studying fluctuations in time series in the form of a bidimensional time and scale representation. We discuss two aspects of wavelet analysis—namely the significance and stochastic/deterministic character of the wavelet spectra. Real-time series of discharge, sodium, and sulfate concentrations in the alpine Rhône River, Switzerland, are used to illustrate these issues. First, the consequences of using an arbitrary stochastic process (usually, AR (1)) instead of the best-fitted general ARMA process in the evaluation of the significance of wavelet spectra are analyzed. Using a general ARMA instead of AR (1) decreases the significance level of the differences in wavelet power spectra (WPS) of ARMA and AR (1) compared to the WPS of the time series in all cases studied and points to a possible systematic overestimation of significance in many published studies. Besides, the significance of particular patches in the spectra is affected by multiple testing. A (conservative) way to circumvent this problem, using global wavelet spectra and global coherence spectra, is evaluated. Finally, we discuss the issue of causality and investigated it in the three measured time series mentioned above. Even if the use of the best fitted ARMA pointed to no deterministic features being present in the corrected series studied (i.e., stochastic processes are dominant in the three data series), coherence spectra between variables allowed to reveal cause-effect relationships between two “coherent” variables and/or the existence of a common effect on both variables. Therefore, such type of analysis provides a useful tool to better understand data causal relationships.


2018 ◽  
Vol 14 (A30) ◽  
pp. 339-341
Author(s):  
Andrea Diercke ◽  
Carsten Denker

Abstracthe Chromospheric Telescope (ChroTel) observes the entire solar disk since 2011 in three different chromospheric wavelengths: Hα, Ca ii K, and He i. The instrument records full-disk images of the Sun every three minutes in these different spectral ranges. The ChroTel observations cover the rising and decaying phase of solar cycle 24. We started analyzing the ChroTel time-series and created synoptic maps of the entire observational period in all three wavelength bands. The maps will be used to analyze the poleward migration of quiet-Sun filaments in solar cycle 24.


2001 ◽  
Vol 203 ◽  
pp. 297-299 ◽  
Author(s):  
D. V. Makarchik ◽  
N. I. Kobanov

Authors have investigated the line-of-sight velocity difference in the radial direction of sunspot penumbrae simultaneously at two height levels, NiI 4857 and Hβ by the differential method. Power spectra of time series exhibit in the range under consideration three groups of periods: 30-40, 12-15, and 8-10 minutes. Particular emphasis has been placed on the low-frequency portion of the spectrum (0.5-2 mHz). In addition to the 12-minute oscillations as detected by Rimmele the line-of-sight velocity component that is caused by Evershed motion is responsible for oscillations with periods of 15-35 minutes, which occur concurrently at the two height levels.


1988 ◽  
Vol 123 ◽  
pp. 41-44
Author(s):  
Edward J. Rhodes ◽  
Alessandro Cacciani ◽  
Martin Woodard ◽  
Steven Tomczyk ◽  
Sylvain Korzennik ◽  
...  

We have obtained estimates of the solar internal rotational velocity from measurements of the frequency splittings of p-mode oscillations. Specifically, we have analyzed a 10-day time series of full-disk Dopplergrams obtained during July and August 1984 at the 60-Foot Tower Telescope of the Mt. Wilson Observatory. The Dopplergrams were obtained with a Na magneto-optical filter and a 244 × 248-pixel CID camera. From the time series we computed power spectra for all of the prograde and retrograde sectoral p-modes from ℓ = 0 to 200 and for all of the tessaral harmonics up to ℓ = 89. We then applied a cross-correlation analysis to the resulting sectoral power spectra to obtain estimates of the frequency splittings. From ℓ = 4 to ℓ = 30 we obtained a mean value of the frequency spitting of roughly 450 nHz (sidereal) in close agreement with most previously published results, while from ℓ = 40 to ℓ = 140 we obtained a mean value of about 470 nHz. We believe that the latter value is slightly higher than the surface rotational splitting of 461 nHz because of possible confusion due to the temporal sidelobes introduced by the day/night observing cycle. Confirmation of this possibility will have to await our computation of tesseral power spectra for degrees greater than our current limit of 89. Finally, for degrees between 140 and 200, the frequency splittings are indistinguishable from the surface rotation rate.


Sign in / Sign up

Export Citation Format

Share Document