XV.—Observations on the Life Cycle and Immature Stages of Culicoides circumscriptus Kieff. (Diptera, Ceratopogonidæ).

1960 ◽  
Vol 67 (4) ◽  
pp. 363-386 ◽  
Author(s):  
P. Becker

SynopsisThe immature stages of C. circumscriptus Kieff. are found in the mud of most Scottish salt marshes. The life cycle has been studied by means of laboratory cultures and by observation and periodic sampling at a salt marsh near Dumbarton. Data are given concerning the life cycle in the laboratory and out of doors. In the field there are two generations a year.In captivity the female lays a single large batch of eggs which adhere to the substrate by means of structures on the chorion. The eggs and the manner of oviposition and hatching are described. Descriptions of the larvae, supplementing those of previous authors are given. The first instar differs from older larvae in possessing a retractable prothoracic proleg, and is more sluggish in its movements, probably remaining near the oviposition site until the first ecdysis. Before pupation the larva comes to the surface. This is necessary for successful pupation, enabling the pupa to breathe and to form the buoyancy space. The pupa buries itself in the mud emerging only under flooded conditions to float on the surface or prior to ecdysis.

2021 ◽  
Author(s):  
Maxime Dahirel ◽  
Marie Wullschleger ◽  
Tristan Berry ◽  
Solène Croci ◽  
Julien Pétillon

AbstractDispersal and its evolution play a key role for population persistence in fragmented landscapes where habitat loss and fragmentation increase the cost of between-habitat movements. In such contexts, it is important to know how variation in dispersal and other traits is structured, and whether responses to landscape fragmentation are aligned with underlying dispersal-trait correlations, or dispersal syndromes. We therefore studied trait variation in Erigone longipalpis, a spider species specialist of (often patchy) salt marshes. We collected spiders in two salt-marsh landscapes differing in habitat availability. We then reared lab-born spiders for two generations in controlled conditions, and measured dispersal and its association with various key traits. E. longipalpis population densities were lower in the more fragmented landscape. Despite this, we found no evidence of differences in dispersal, or any other trait we studied, between the two landscapes. While a dispersal syndrome was present at the among-individual level (dispersers were more fecund and faster growing, among others), there was no indication it was genetically driven: among-family differences in dispersal were not correlated with differences in other traits. Instead, we showed that the observed phenotypic covariations were mostly due to within-family correlations. We hypothesize that the dispersal syndrome is the result of asymmetric food access among siblings, leading to variation in development rates and carrying over to adult traits. Our results show we need to better understand the sources of dispersal variation and syndromes, especially when dispersal may evolve rapidly in response to environmental change.


Zoosymposia ◽  
2021 ◽  
Vol 20 ◽  
Author(s):  
ZHI-QIANG ZHANG

The Winterschmidtiidae are a family of over 140 species of fungivorous, saprophagous, predatory and/or parasitic mites in insect/vertebrate nests, in decaying organic matter, in soils and on plants worldwide. In this review, I provide a survey of the immature developmental time, adult longevity and lifespan of the Winterschmidtiidae as part of the series on the lifespans in the Acari. The complete life cycle in this family includes five immature stages (the egg, larva, protonymph, deutonymph and tritonymph) and adult male/female, with deutonymphs lost in some genera such as Czenspinskia and Oulenziella. Development or lifespan data have been reported for only three species (< 3%) of the Winterschmidtiidae, and the experimentally measured lifespans of one to two months most likely reflect those of the summer generation. Afrocalvolia nataliae has two generations per year: the summer generation, which has no deutonymph stage, is mainly devoted to feeding and reproduction and lasts for one month only; the winter generation, however, has a deutonymph stage to resist the cold conditions and lasts for as long as 11 months.


Author(s):  
Makoto Asano

The life cycle, bionomics and mature larval structures of the Japanese prionocerid species, Idgia iriomoteana Nakane, 1980 were investigated in captivity. The results showed that I. iriomoteana has the following characteristics: (1) the larval morph is less advanced in terms of miniaturization, and larvae pass seven larval molts before they pupate; (2) the life cycle is univoltine with summer, not winter, dormancy; (3) the first instar larvae are larger than the size of the egg, but foetomorphic larval instar (which is observed in the Melyridae: Malachiinae) is not shown. Based on comparison with melyrid species, the degree of miniaturization, dormancy behaviour, adaptation to the tropical and subtropical climates and the adaptive significance of a large first instar larva are all discussed. This study is the first to report the complete life cycle of a member of the family Prionoceridae.


2020 ◽  
Vol 645 ◽  
pp. 187-204
Author(s):  
PJ Rudershausen ◽  
JA Buckel

It is unclear how urbanization affects secondary biological production in estuaries in the southeastern USA. We estimated production of larval/juvenile Fundulus heteroclitus in salt marsh areas of North Carolina tidal creeks and tested for factors influencing production. F. heteroclitus were collected with a throw trap in salt marshes of 5 creeks subjected to a range of urbanization intensities. Multiple factor analysis (MFA) was used to reduce dimensionality of habitat and urbanization effects in the creeks and their watersheds. Production was then related to the first 2 dimensions of the MFA, month, and year. Lastly, we determined the relationship between creek-wide larval/juvenile production and abundance from spring and abundance of adults from autumn of the same year. Production in marsh (g m-2 d-1) varied between years and was negatively related to the MFA dimension that indexed salt marsh; higher rates of production were related to creeks with higher percentages of marsh. An asymptotic relationship was found between abundance of adults and creek-wide production of larvae/juveniles and an even stronger density-dependent relationship was found between abundance of adults and creek-wide larval/juvenile abundance. Results demonstrate (1) the ability of F. heteroclitus to maintain production within salt marsh in creeks with a lesser percentage of marsh as long as this habitat is not removed altogether and (2) a density-dependent link between age-0 production/abundance and subsequent adult recruitment. Given the relationship between production and marsh area, natural resource agencies should consider impacts of development on production when permitting construction in the southeastern USA.


2018 ◽  
Vol 5 (5) ◽  
pp. 172470 ◽  
Author(s):  
Stephanie K. Courtney Jones ◽  
Adam J. Munn ◽  
Phillip G. Byrne

Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse ( Mus musculus ) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.


2021 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ben R. Evans ◽  
Iris Möller ◽  
Tom Spencer

Salt marshes are important coastal environments and provide multiple benefits to society. They are considered to be declining in extent globally, including on the UK east coast. The dynamics and characteristics of interior parts of salt marsh systems are spatially variable and can fundamentally affect biotic distributions and the way in which the landscape delivers ecosystem services. It is therefore important to understand, and be able to predict, how these landscape configurations may evolve over time and where the greatest dynamism will occur. This study estimates morphodynamic changes in salt marsh areas for a regional domain over a multi-decadal timescale. We demonstrate at a landscape scale that relationships exist between the topology and morphology of a salt marsh and changes in its condition over time. We present an inherently scalable satellite-derived measure of change in marsh platform integrity that allows the monitoring of changes in marsh condition. We then demonstrate that easily derived geospatial and morphometric parameters can be used to determine the probability of marsh degradation. We draw comparisons with previous work conducted on the east coast of the USA, finding differences in marsh responses according to their position within the wider coastal system between the two regions, but relatively consistent in relation to the within-marsh situation. We describe the sub-pixel-scale marsh morphometry using a morphological segmentation algorithm applied to 25 cm-resolution maps of vegetated marsh surface. We also find strong relationships between morphometric indices and change in marsh platform integrity which allow for the inference of past dynamism but also suggest that current morphology may be predictive of future change. We thus provide insight into the factors governing marsh degradation that will assist the anticipation of adverse changes to the attributes and functions of these critical coastal environments and inform ongoing ecogeomorphic modelling developments.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniel R. Leadbeater ◽  
Nicola C. Oates ◽  
Joseph P. Bennett ◽  
Yi Li ◽  
Adam A. Dowle ◽  
...  

Abstract Background Salt marshes are major natural repositories of sequestered organic carbon with high burial rates of organic matter, produced by highly productive native flora. Accumulated carbon predominantly exists as lignocellulose which is metabolised by communities of functionally diverse microbes. However, the organisms that orchestrate this process and the enzymatic mechanisms employed that regulate the accumulation, composition and permanence of this carbon stock are not yet known. We applied meta-exo-proteome proteomics and 16S rRNA gene profiling to study lignocellulose decomposition in situ within the surface level sediments of a natural established UK salt marsh. Results Our studies revealed a community dominated by Gammaproteobacteria, Bacteroidetes and Deltaproteobacteria that drive lignocellulose degradation in the salt marsh. We identify 42 families of lignocellulolytic bacteria of which the most active secretors of carbohydrate-active enzymes were observed to be Prolixibacteracea, Flavobacteriaceae, Cellvibrionaceae, Saccharospirillaceae, Alteromonadaceae, Vibrionaceae and Cytophagaceae. These families secreted lignocellulose-active glycoside hydrolase (GH) family enzymes GH3, GH5, GH6, GH9, GH10, GH11, GH13 and GH43 that were associated with degrading Spartina biomass. While fungi were present, we did not detect a lignocellulolytic contribution from fungi which are major contributors to terrestrial lignocellulose deconstruction. Oxidative enzymes such as laccases, peroxidases and lytic polysaccharide monooxygenases that are important for lignocellulose degradation in the terrestrial environment were present but not abundant, while a notable abundance of putative esterases (such as carbohydrate esterase family 1) associated with decoupling lignin from polysaccharides in lignocellulose was observed. Conclusions Here, we identify a diverse cohort of previously undefined bacteria that drive lignocellulose degradation in the surface sediments of the salt marsh environment and describe the enzymatic mechanisms they employ to facilitate this process. Our results increase the understanding of the microbial and molecular mechanisms that underpin carbon sequestration from lignocellulose within salt marsh surface sediments in situ and provide insights into the potential enzymatic mechanisms regulating the enrichment of polyphenolics in salt marsh sediments.


2007 ◽  
Vol 67 (1) ◽  
pp. 173-177 ◽  
Author(s):  
A. Specht ◽  
AC. Formentini ◽  
E. Corseuil

The aim of this work was to study biological aspects and the life cycle of Hylesia Metapyrrha in a laboratory. Laboratorial breeding was made at 25 ± 1 °C, 70 ± 10% UR and 14 hours of photophase, feeding the larvae with guava leaves (Psidium guayava L. - Myrtaceae). Time was evaluated on the days of all the development stages; morphometry was evaluated in millimeters and the pupa’s mass in grams. The eggs were disposed in groups and covered by urticating abdominal hair. The incubation period lasted 52 days. The larvae, with gregarious habits, presented background black coloration, yellowish scoli and two orange longitudinal lines above and below the spiracles, during the development which lasted an average period of 74.59 days and went through seven instars. The pre-pupa and the pupa stages lasted on average 8.82 and 50.56 days, respectively; the female pupae presented a duration, weight and size which was significantly bigger. The adult stage lasted on average 5.50 days with periods of pre, post and oviposition of 2.30, 1.90 and 1.00 days, respectively. This study broadens the knowledge of the immature stages, biological, morphological and behavioral aspects, until then restricted to the morphology and to registers of the occurrence of the adult forms.


Author(s):  
Paola V. Silva ◽  
Tomás A. Luppi ◽  
Eduardo D. Spivak

Chasmagnathus granulatus is a semiterrestrial intertidal burrowing crab that inhabits both the unvegetated mudflats and the cordgrass (Spartina densiflora) salt marshes in Mar Chiquita Lagoon (Argentina), where it is considered the ecologically key species. The mass of C. granulatus eggs incubated by females is colonized by epibiotic micro-organisms and accumulates detritus. The type of epibionts that use eggs as a substrate, the infestation degree, the maternal care behaviour and the protection of the incubation chamber were compared between females living on mudflats and on Spartina-dominated areas. In both places, the epibiosis by bacteria and filamentous fungi and peritrichid colonial ciliate was significantly higher in the periphery than in the centre of the brood mass. The accumulation of detritus was higher in the periphery in mudflat females but not in salt marsh females. Moreover, the level of detritus was significantly higher in mudflat than in salt marsh females only in the periphery of the brood. The infestation level of bacteria and fungi, and peritrichids, increased throughout the embryonic development only in mudflat females. The periphery of the brood mass was significantly more contaminated in mudflat than in marsh females, while the central region of the brood mass did not differ between habitats. The pleopods were significantly more contaminated by bacteria and filamentous fungi and peritrichid colonial ciliates in premoult females than in postmoult females, independently from the collection site. The percentage of females with abnormal embryos was significantly higher in mudflats (26.7%) than in marshes (12.3%). Females with late embryos spent more time flapping the abdomen and probing the embryos with the chela. Non-ovigerous females did not perform specific maternal care activities. The volume of brood mass both in early or late stage of development is greater than that of the incubation chamber and, consequently, peripheral embryos are more exposed.


1973 ◽  
Vol 105 (8) ◽  
pp. 1091-1099 ◽  
Author(s):  
I. D. Hodkinson

AbstractThe four larval instars and the pupa of Ptychoptera lenis lenis Osten Sacken are described. Instars 2 to 4 are very similar morphologically but instar 1 is markedly different. Both a pharate pupal and a pharate adult stage were observed. Larvae are found in stagnant marginal areas of ponds where water depth does not exceed 4 cm and where benthic deposits of plant detritus exceed 8 cm. Fourth instar larvae, under experimental conditions, survived up to 45 days without contact with atmospheric oxygen but development was arrested. P. lenis has a 1 year life cycle with an extended adult emergence season from late May to the end of July.


Sign in / Sign up

Export Citation Format

Share Document