scholarly journals A CO Search for Molecular Gas in High Mass Post-Main-Sequence Nebulae

1989 ◽  
Vol 120 ◽  
pp. 295-299
Author(s):  
J.P. Phillips ◽  
A. Mampaso ◽  
N. Ukita ◽  
P.G. Williams

High mass post-main-sequence nebulae are characterised by a set of unusual, and in certain cases extreme physical characteristics, including large outflow velocities (cf. Phillips and Mampaso, 1988a), extremely compact high emission measure cores (Phillips and Mampaso, 1988b), a high incidence of bipolar morphology (Peimbert and Torres Peimbert, 1982), and evidence for anomalously high levels of shock excited H2 S(l) emission towards both the source cores (Phillips et al 1983, 1985) and nebular peripheries (Zuckerman and Gatley, 1988). The large central star masses also predispose these sources to rapid evolution within the H-R plane (perhaps one or two orders of magnitude more rapid than for typical PN (Schonberner 1981, 1983), and the acquisition of stellar temperatures T* > 105 K, giving rise to correspondingly high levels of nebular excitation.

2002 ◽  
Vol 187 ◽  
pp. 239-243 ◽  
Author(s):  
Howard E. Bond ◽  
M. Sean O’Brien ◽  
Edward M. Sion ◽  
Dermott J. Mullan ◽  
Katrina Exter ◽  
...  

AbstractV471 Tauri is a short-period eclipsing binary, and a member of the Hyades. It is composed of a hot DA white dwarf (WD) and a cool main-sequence dK2 companion. HST radial velocities of the WD, in combination with the ground-based spectroscopic orbit of the K star, yield dynamical masses of MWD = 0.84 and MdK = 0.93 M⊙. During the UV observations we serendipitously detected coronal mass ejections from the K star, passing in front of the WD and appearing as sudden, transient metallic absorption. Eclipse timings show that the active dK star is 18% larger than a main-sequence star of the same mass, an apparent consequence of its extensive starspot coverage. The high Teff and high mass of the WD are paradoxical: the WD is the most massive in the Hyades, but also the youngest. A plausible scenario is that the progenitor system was a triple, with a close inner pair that merged after several × 108 yr to produce a single blue straggler. When this star evolved to the AGB phase, it underwent a common-envelope interaction with a distant dK companion, which spiraled down to its present separation and ejected the envelope. The common-envelope efficiency parameter, αCE, was of order 0.3–1.0, in good agreement with recent hydrodynamical simulations.SuWt 2 is a southern-hemisphere planetary nebula (PN) with an unusual ring-shaped morphology. The central star is an eclipsing binary with a period of 4.9 days. Surprisingly, the binary is composed of two main-sequence A-type stars with similar masses of ~ 2.5 M⊙. We discuss scenarios involving a third companion which ejected and ionizes the PN.WeBo 1 is a northern PN with a ring morphology remarkably similar to that of SuWt 2. Although we hoped that its central star would shed light on the nature of SuWt 2, it has proven instead to be a late-type barium star!


2020 ◽  
Vol 501 (1) ◽  
pp. 730-746
Author(s):  
Omri Ginzburg ◽  
Marc Huertas-Company ◽  
Avishai Dekel ◽  
Nir Mandelker ◽  
Gregory Snyder ◽  
...  

ABSTRACT We use deep learning to explore the nature of observed giant clumps in high-redshift disc galaxies, based on their identification and classification in cosmological simulations. Simulated clumps are detected using the 3D gas and stellar densities in the VELA zoom-in cosmological simulation suite, with ${\sim}25\ \rm {pc}$ maximum resolution, targeting main-sequence galaxies at 1 < z < 3. The clumps are classified as long-lived clumps (LLCs) or short-lived clumps (SLCs) based on their longevity in the simulations. We then train neural networks to detect and classify the simulated clumps in mock, multicolour, dusty, and noisy HST-like images. The clumps are detected using an encoder–decoder convolutional neural network (CNN), and are classified according to their longevity using a vanilla CNN. Tests using the simulations show our detector and classifier to be ${\sim}80{{\ \rm per\ cent}}$ complete and ${\sim}80{{\ \rm per\ cent}}$ pure for clumps more massive than ∼107.5 M⊙. When applied to observed galaxies in the CANDELS/GOODS S+N fields, we find both types of clumps to appear in similar abundances in the simulations and the observations. LLCs are, on average, more massive than SLCs by ∼0.5 dex, and they dominate the clump population above Mc ≳ 107.6 M⊙. LLCs tend to be found closer to the galactic centre, indicating clump migration to the centre or preferential formation at smaller radii. The LLCs are found to reside in high-mass galaxies, indicating better clump survivability under supernova feedback there, due to clumps being more massive in these galaxies. We find the clump masses and radial positions in the simulations and the observations to agree within a factor of 2.


Author(s):  
T M Lawlor

Abstract We present stellar evolution calculations from the Asymptotic Giant Branch (AGB) to the Planetary Nebula (PN) phase for models of initial mass 1.2 M⊙ and 2.0 M⊙ that experience a Late Thermal Pulse (LTP), a helium shell flash that occurs following the AGB and causes a rapid looping evolution between the AGB and PN phase. We use these models to make comparisons to the central star of the Stingray Nebula, V839 Ara (SAO 244567). The central star has been observed to be rapidly evolving (heating) over the last 50 to 60 years and rapidly dimming over the past 20–30 years. It has been reported to belong to the youngest known planetary nebula, now rapidly fading in brightness. In this paper we show that the observed timescales, sudden dimming, and increasing Log(g), can all be explained by LTP models of a specific variety. We provide a possible explanation for the nebular ionization, the 1980’s sudden mass loss episode, the sudden decline in mass loss, and the nebular recombination and fading.


1983 ◽  
Vol 103 ◽  
pp. 520-520
Author(s):  
M. Cohen ◽  
D.R. Flower ◽  
A. Goharji

Sw St 1 is a compact and possibly young planetary nebula which has been recently observed at infra red (Aitken et al., 1979) and radio (Kwok et al., 1981) wavelengths. In the 8-13 μm region, a silicate emission feature is observed, suggesting that the nebular envelope is oxygen rich. The high emission measure determined from the radio observations implies a large value for the electron density.


2013 ◽  
Vol 768 (1) ◽  
pp. 74 ◽  
Author(s):  
L. J. Tacconi ◽  
R. Neri ◽  
R. Genzel ◽  
F. Combes ◽  
A. Bolatto ◽  
...  

2018 ◽  
Vol 620 ◽  
pp. A189 ◽  
Author(s):  
K. Oláh ◽  
S. Rappaport ◽  
T. Borkovits ◽  
T. Jacobs ◽  
D. Latham ◽  
...  

Context. Stars can maintain their observable magnetic activity from the pre-main sequence (PMS) to the tip of the red giant branch. However, the number of known active giants is much lower than active stars on the main sequence (MS) since the stars spend only about 10% of their MS lifetime on the giant branch. Due to their rapid evolution it is difficult to estimate the stellar parameters of giant stars. A possibility for obtaining more reliable stellar parameters for an active giant arises when it is a member of an eclipsing binary system. Aims. We have discovered EPIC 211759736, an active spotted giant star in an eclipsing binary system during the Kepler K2 Campaign 5. The eclipsing nature allows us to much better constrain the stellar parameters than in most cases of active giant stars. Methods. We have combined the K2 data with archival HATNet, ASAS, and DASCH photometry, new spectroscopic radial velocity measurements, and a set of follow-up ground-based BVRCIC photometric observations, to find the binary system parameters as well as robust spot models for the giant at two different epochs. Results. We determined the physical parameters of both stellar components and provide a description of the rotational and long-term activity of the primary component. The temperatures and luminosities of both components were examined in the context of the Hertzsprung–Russell diagram. We find that both the primary and the secondary components deviate from the evolutionary tracks corresponding to their masses in the sense that the stars appear in the diagram at lower masses than their true masses. Conclusions. We further evaluate the proposition that traditional methods generally result in higher masses for active giants than what is indicated by stellar evolution tracks in the HR diagram. A possible reason for this discrepancy could be a strong magnetic field, since we see greater differences in more active stars.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Hiroyuki Nakanishi ◽  
Shinji Fujita ◽  
Kengo Tachihara ◽  
Natsuko Izumi ◽  
Mitsuhiro Matsuo ◽  
...  

ABSTRACT We analyze molecular-gas formation in neutral atomic hydrogen (H i) clouds using the latest CO data, obtained from the FOREST (four-beam receiver system on the 45 m telescope) unbiased Galactic plane imaging survey with the Nobeyama 45 m telescope, and using H i data taken from the Very Large Array Galactic plane survey. We applied a dendrogram algorithm to the H i data cube to identify H i clouds, and we calculated the H i mass and molecular-gas mass by summing the CO line intensity within each H i cloud. On the basis of the results, we created a catalog of 5737 identified H i clouds with local standard of rest (LSR) velocity of VLSR ≤ −20 km s−1 in galactic longitude and latitude ranges of 20° ≤ l ≤ 50° and −1° ≤ b ≤ 1°, respectively. We found that most of the H i clouds are distributed within a Galactocentric distance of 16 kpc, and most of them are in the cold neutral medium phase. In addition, we determined that the high-mass end of the H i mass function is fitted well with a power-law function with an index of 2.3. Although two sequences of self-gravitating and diffuse clouds are expected to appear in the M tot–$M_{\,{\rm H}_2}$ diagram according to previous works based on a plane-parallel model, the observational data show only a single sequence with large scattering within these two sequences. This implies that most of the clouds are mixtures of these two types of clouds. Moreover, we suggest the following scenario of molecular-gas formation: an H i-dominant cloud evolved with increasing H2 mass along a path of $M_{\,{\rm H}_2} \propto M_{\,\rm tot}^2$ by collecting diffuse gas before reaching and moving along the curves of the two sequences.


1987 ◽  
Vol 122 ◽  
pp. 99-100
Author(s):  
P.S. Thé ◽  
D. N. Dawanas

Intermediate mass (2 < M/M⊙ < 9) pre-main sequence objects, also named Herbig Ae/Be stars, are known to have excess radiation in the near-infrared. From IRAS o bservations it turns out without doubt (quality 3, high S/N radio), that these objects are very strong far-infrared emitters at 12, 25, 60 and often also at 100 μm. The spectral energy distribution, depicted in Fig. 1 for intermediate mass pre-main sequence stars, show clearly this large excess. From the difference curves it is apparent that this excess radiation is most probably caused by several dust shells. Using very simplified methods it is possible to derive the average temperature of the dust shells (see Thé, Wesselius, Tjin A Djie and Steenman, 1986). If the chemical composition of the mixture of the dust grains and their average size are assumed it is also possible to estimate other characteristics like the distance from the central star and the mass of the dust shells (see Thé, Hageman, Westerlund, Tjin A Djie, 1985).


1978 ◽  
Vol 80 ◽  
pp. 277-280
Author(s):  
M. Golay

In an attempt to determine the Hyades distance (Golay, 1973), it was assumed that stars of the same “photometric 0m.01 box” (see Golay, 1977a) have the same visual absolute magnitude. The large amount of photometric data in the UBV B1B2V1G photometric system allows a discussion on this hypothesis (Golay, 1977b). We have 60 “photometric 0m.01 boxes”, each containing a central star of known trigonometric parallax and at least one Praesepe star. We select the 16 boxes (Table I) containing single stars or binaries with an estimated mass ratio, a relative probable error &lt; 30% for the parallaxes and a standard deviation for colors &lt;0m.007. The UBV B1B2V1G colors, the indices (B-V), (B2-V1) and the magnitude mVare taken from theSecond Catalogue(Rufener, 1976) and the internal catalogue of the Geneva Observatory. The color index (B-V) is taken from Johnson (1952, 1957), Johnson and Knuckles (1955), the trigonometric parallax from Jenkins (1952, 1963) and Gliese (1969) and the spectral type for Hyades stars from Morgan and Hiltner (1965). The listings of all 0m.01 photometric star boxes in the UBV B1B2V1G system are given by Golay (1977c). The parallax obtained for Praesepe is π(0″.001) = 6.175 ± p.e. 0.1, i.e. a distance modulus (m-M) = 6m.05 and a distance of 162 parsecs. Golay (1977c) published the differences of the distance moduli for pairs of clusters having stars in the same box. The distances of these clusters is given in Table III, assuming a distance of 162 pc for Praesepe. The accuracy of this method is independent of both the distance magnitude and the chemical composition of the stars of a cluster since the stars have to be in the same box as a star with a known trigonometric parallax. The main sequence of Praesepe and a sample of Hyades stars, in the same photometric box with a Praesepe star is given in Table II. The depth effect in Praesepe being very small, the main sequence is very thin and the main sequence fitting procedure is better starting from Praesepe than from the Hyades.


Sign in / Sign up

Export Citation Format

Share Document