scholarly journals RS CVn STARS: Photospheric Phenomena and Rotation

1983 ◽  
Vol 71 ◽  
pp. 343-361
Author(s):  
S. Catalano

ABSTRACTThis review presents a summary of observed photospheric phenomena on RS CVn stars: the amplitude, shape, evolution and migration rate of the photometric wave in relation to the rotational and orbital motion.The main points considered are: 1) the activity level (maximum amplitude, short and long timescale variability) versus rotation period; 2) the activity cycles as inferred from changes in the wave migration rate and direction and from the variation of its amplitude; 3) the detection of differential rotation; 4) the connection between the orbital period variation and activity.

1983 ◽  
Vol 71 ◽  
pp. 137-156 ◽  
Author(s):  
Steven S. Vogt

AbstractA review is presented of the current state of observational knowledge concerning spots, spot-cycles and surface magnetic fields on active late-type dwarfs. The discussion centers primarily on the physical characteristics of starspots on BY Dra-type stars, including spot sizes, temperatures, structural morphology, migratory motions, and activity cycles. The discussion will also include some references to similar spot phenomena on the RS CVn stars. Observational evidence for surface magnetic fields on these stars, and on chromospherically-active G and K dwarfs, is also reviewed.


2013 ◽  
Vol 9 (S302) ◽  
pp. 224-227
Author(s):  
Krisztián Vida ◽  
Katalin Oláh

AbstractUsing data of fast-rotating active dwarf stars in the Kepler database, we perform time-frequency analysis of the light curves in order to search for signs of activity cycles. We use the phenomenon that the active region latitudes vary with the cycle (like the solar butterfly diagram), which causes the observed rotation period to change as a consequence of differential rotation. We find cycles in 8 cases of the 39 promising targets with periods between of 300–900 days.


Author(s):  
B Toledo-Padrón ◽  
J I González Hernández ◽  
C Rodríguez-López ◽  
A Suárez Mascareño ◽  
R Rebolo ◽  
...  

Abstract The search for Earth-like planets around late-type stars using ultra-stable spectrographs requires a very precise characterization of the stellar activity and the magnetic cycle of the star, since these phenomena induce radial velocity (RV) signals that can be misinterpreted as planetary signals. Among the nearby stars, we have selected Barnard’s Star (Gl 699) to carry out a characterization of these phenomena using a set of spectroscopic data that covers about 14.5 years and comes from seven different spectrographs: HARPS, HARPS-N, CARMENES, HIRES, UVES, APF, and PFS; and a set of photometric data that covers about 15.1 years and comes from four different photometric sources: ASAS, FCAPT-RCT, AAVSO, and SNO. We have measured different chromospheric activity indicators (Hα, Ca II HK and Na I D), as well as the FWHM of the cross-correlation function computed for a sub-set of the spectroscopic data. The analysis of Generalized Lomb-Scargle periodograms of the time series of different activity indicators reveals that the rotation period of the star is 145 ± 15 days, consistent with the expected rotation period according to the low activity level of the star and previous claims. The upper limit of the predicted activity-induced RV signal corresponding to this rotation period is about 1 m/s. We also find evidence of a long-term cycle of 10 ± 2 years that is consistent with previous estimates of magnetic cycles from photometric time series in other M stars of similar activity levels. The available photometric data of the star also support the detection of both the long-term and the rotation signals.


2020 ◽  
Author(s):  
Yin-Hsuan Liao ◽  
Ho-Han Hsu ◽  
Jyun-Nai Wu ◽  
Tzu-Ting Chen ◽  
Eason Yi-Cheng Yang ◽  
...  

<p>        Submarine sand waves are known to be induced by tidal currents and their migration has become an important issue since it may affect seafloor installations. In Taiwan Strait, widely spreading sand waves have been recognized on the Changyun Ridge, a tide-dominated giant sand ridge offshore western Taiwan. However, due to lacking of high-resolution and repeated geophysical surveys before, detailed characteristics and migrating features of the sand waves in Taiwan Strait were poorly understood. As new multibeam bathymetric and seismic data were collected repeatedly during 2016 - 2018 for offshore wind farm projects, we can now advance the understanding of sand wave characteristics and migration patterns in the study area. We apply a geostatistical analysis method on bathymetry data to reveal distribution and spatial characteristics of the sand waves, and estimate its migration pattern by using an updated spatial cross-correlation method. Then, sedimentary features, internal structures and thicknesses of sand waves are observed and estimated on high-resolution seismic profiles. Our results show that the study area is mostly superimposed by multi-scaled sandy rhythmic bed forms. However, the geomorphological and migrating characteristics of the sand waves are complicated. Their wavelengths range from 80 to 200 m, heights range from 1.5 to 8 m, and crests are generally oriented in the WNW-ESE direction. Obvious sand wave migration was detected from repeated high-resolution multi-beam data between 2016 and 2018, and migration distances can be up to ~150 m in 15 months. The average elevation change of the seafloor over the whole survey area is ~3.0 m, with a maximum value of 6.9 m. Moreover, the sand waves can migrate over 30 m with ~2.5 m elevation change in 2 months and migrate over 5 m with ~1 m elevation change in 15 days. The results also show that the orientation of wave movement can be reversed even within a small distance. By identifying the base of sand wave on seismic profiles, the thicknesses of sand waves are found ranging from 1 to 10 meters. The base of wave structure become slightly deeper from nearshore to offshore. Our results indicate that the thickness of sand waves increases with degree of asymmetry and migration rate. By bathymetric and reflection seismic data analyses, systematic spatial information of sand waves in the study area are established, and we suggest that not only tidal currents can affect sand wave migration patterns, but also wave structures and thicknesses play important roles in sand wave migrating processes and related geomorphological changes.</p>


1990 ◽  
Vol 205 ◽  
Author(s):  
R.S. May ◽  
B. Evans

AbstractIn situ observations of CIGM in CaCO3 bicrystals with a SrCO3 solute source were made. The change in boundary orientation and migration rate were compared with solute concentration. The liquid film model for coherency strain Induced migration was generalized to any non-cubic system and applied to CaCO3-SrCO3. The coherent layer was modeled as a thin film on an infinite half-space. The strain energy was found from solution of the Hooke's law expressions transformed to the appropriate coordinate system. For triclinic or monoclinic films the strain tensor was found by an eigenvector decomposition of the transformation matrix that defined the lattice parameter change with composition. High anisotropy of Vegard's law constants for CaCO3-SrCO3 caused (111) to have the lowest coherency strain per unit solute. Surfaces perpendicular to (111) in coherent equilibria were predicted to have half the solute concentration and three times the migration driving force of those perpendicular to (111). However, no correlation between solute concentration and boundary orientation was observed. Ambiguous and contradictory evidence for a relationship between solute concentration, boundary orientation, and migration rate was found. The self-stress state of a grain boundary in a solute diffusion field may be better modelled as hydrostatic rather than plane stress. Hydrostatic compression may interact with the boundary excess volume and cause a PV driving force for migration. Predictions based on coherent equilibrium at a surface have not been tested for that geometry in calcite; they should be tested before they are applied to grain boundaries.


2014 ◽  
Vol 80 (3) ◽  
pp. 533-534 ◽  
Author(s):  
Lorenzo Fuccio ◽  
Gabriele Lami ◽  
Alessandra Guido ◽  
Carlo Fabbri
Keyword(s):  

2014 ◽  
Vol 15 (10) ◽  
pp. 18725-18741 ◽  
Author(s):  
Arkadiusz Dziedzic ◽  
Robert Kubina ◽  
Agata Kabała-Dzik ◽  
Robert Wojtyczka ◽  
Tadeusz Morawiec ◽  
...  

2021 ◽  
Author(s):  
Anine Crous ◽  
Madeleen Jansen Rensburg ◽  
Heidi Abrahamse

Abstract Photobiomodulation (PBM) has been used as a bio stimulatory tool for adipose-derived mesenchymal stem cells (ADMSCs). The goal of this in vitro research was to examine the effects of combined and/or single applications of near infra-red (NIR) and green PBM using 5 J/cm2 on ADMSCs. The results indicated that the viability of ADMSCs are not affected by single or combined wavelengths of 525 and 825 nm at 5 J/cm2. However, PBM significantly stimulated cell metabolism seen by an increase in proliferation, it also upregulated intracellular ROS and MMP using 825 nm and 525 nm wavelengths. The combined wavelength irradiation mimicked results found for 825 nm during ATP measurement, cell concentration and migration rate, however significant MMP stimulation and increased ROS production was achieved. In conclusion, results indicate that the combination wavelengths of 525 and 825 nm can be used in the expansion and differentiation of ADMSCs for regenerative purposes.


Sign in / Sign up

Export Citation Format

Share Document