scholarly journals Three-dimensional multimode Rayleigh–Taylor and Richtmyer–Meshkov instabilities at all density ratios

2003 ◽  
Vol 21 (3) ◽  
pp. 327-334 ◽  
Author(s):  
D. KARTOON ◽  
D. ORON ◽  
L. ARAZI ◽  
D. SHVARTS

The three-dimensional (3D) turbulent mixing zone (TMZ) evolution under Rayleigh–Taylor and Richtmyer–Meshkov conditions was studied using two approaches. First, an extensive numerical study was made, investigating the growth of a random 3D perturbation in a wide range of density ratios. Following that, a new 3D statistical model was developed, similar to the previously developed two-dimensional (2D) statistical model, assuming binary interactions between bubbles that are growing at a 3D asymptotic velocity. Confirmation of the theoretical model was gained by detailed comparison of the bubble size distribution to the numerical simulations, enabled by a new analysis scheme that was applied to the 3D simulations. In addition, the results for the growth rate of the 3D bubble front obtained from the theoretical model show very good agreement with both the experimental and the 3D simulation results. A simple 3D drag–buoyancy model is also presented and compared with the results of the simulations and the experiments with good agreement. Its extension to the spike-front evolution, made by assuming the spikes' motion is governed by the single-mode evolution determined by the dominant bubbles, is in good agreement with the experiments and the 3D simulations. The good agreement between the 3D theoretical models, the 3D numerical simulations, and the experimental results, together with the clear differences between the 2D and the 3D results, suggest that the discrepancies between the experiments and the previously developed models are due to geometrical effects.

2003 ◽  
Vol 21 (3) ◽  
pp. 363-368 ◽  
Author(s):  
A. YOSEF-HAI ◽  
O. SADOT ◽  
D. KARTOON ◽  
D. ORON ◽  
L.A. LEVIN ◽  
...  

The late-time growth rate of the Richtmyer–Meshkov instability was experimentally studied at different Atwood numbers with two-dimensional (2D) and three-dimensional (3D) single-mode initial perturbations. The results of these experiments were found to be in good agreement with the results of the theoretical model and numerical simulations. In another set of experiments a bubble-competition phenomenon, which was observed in previous work for 2D initial perturbation (Sadotet al., 1998), was shown to exist also when the initial perturbation is of a 3D nature.


Author(s):  
Yasuo Ose ◽  
Zensaku Kawara ◽  
Tomoaki Kunugi

In this study, in order to clarify the heat transfer characteristics of the subcooled pool boiling and to discuss its mechanism, the boiling and condensation model for numerical simulation on subcooled boiling phenomena has been developed. In this paper, the three dimensional numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver) with the boiling and condensation model which consisted of the improved phase-change model and the relaxation time based on the quasi-thermal equilibrium hypothesis have been conducted for the subcooled pool boiling phenomena especially regarding to the bubble departure behavior from the heated surface. The results of the numerical simulations were compared with the experimental data obtained by the high-speed camera (Phantom 7.1) with the Cassegrain optical system, and then the influence of the degree of subcooling for the bubble departing behaviors including their shape changes from the heated surface were numerically predicted. As the results, the numerical results of the bubble departing behavior from the heated surface showed in good agreement with the experimental observations quantitatively.


2017 ◽  
Vol 824 ◽  
pp. 866-885 ◽  
Author(s):  
Ali Mazloomi Moqaddam ◽  
Shyam S. Chikatamarla ◽  
Iliya V. Karlin

Recent experiments with droplets impacting macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. Here we present a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantifies the roles played by various external and internal forces. For the first time, accurate three-dimensional simulations involving realistic macro-textured surfaces are performed. After demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analysing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyse the role played by the texture density. Moreover, we report a nonlinear behaviour of the contact time with the increase of the Weber number for imperfectly coated textures, and study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.


2020 ◽  
Vol 8 (10) ◽  
pp. 756
Author(s):  
Ameen Topa ◽  
Burak Can Cerik ◽  
Do Kyun Kim

The development of numerical simulations is potentially useful in predicting the most suitable manufacturing processes and ultimately improving product quality. Seamless pipes are manufactured by a rotary piercing process in which round billets (workpiece) are fed between two rolls and pierced by a stationary plug. During this process, the material undergoes severe deformation which renders it impractical to be modelled and analysed with conventional finite element methods. In this paper, three-dimensional numerical simulations of the piercing process are performed with an arbitrary Lagrangian–Eulerian (ALE) formulation in LS-DYNA software. Details about the material model as well as the elements’ formulations are elaborated here, and mesh sensitivity analysis was performed. The results of the numerical simulations are in good agreement with experimental data found in the literature and the validity of the analysis method is confirmed. The effects of varying workpiece velocity, process temperature, and wall thickness on the maximum stress levels of the product material/pipes are investigated by performing simulations of sixty scenarios. Three-dimensional surface plots are generated which can be utilized to predict the maximum stress value at any given combination of the three parameters.


2014 ◽  
Vol 694 ◽  
pp. 187-192
Author(s):  
Jin Xiang Wu ◽  
Jian Sun ◽  
Xiang Gou ◽  
Lian Sheng Liu

The three-dimensional coupled explicit Reynolds Averaged Navier–Stokes (RANS) equations and the two equation shear-stress transport k-w (SST k-w) model has been employed to numerically simulate the cold flow field in a special-shaped cavity-based supersonic combustor. In a cross-section shaped rectangular, hypersonic inlet with airflow at Mach 2.0 chamber, shock structures and flow characteristics of a herringbone-shaped boss and a herringbone-shaped cavity models were discussed, respectively. The results indicate: Firstly, according to the similarities of bevel-cutting shock characteristics between the boss case and the cavity case, the boss structure can serve as an ideal alternative model for shear-layer. Secondly, the eddies within cavity are composed of herringbone-spanwise vortexes, columnar vortices in the front and main-spanwise vortexes in the rear, featuring tilting, twisting and stretching. Thirdly, the simulated bottom-flow of cavity is in good agreement with experimental result, while the reverse flow-entrainment resulting from herringbone geometry and pressure gradient. However, the herringbone-shaped cavity has a better performance in fuel-mixing.


2016 ◽  
Vol 713 ◽  
pp. 288-292 ◽  
Author(s):  
Jabid Quiroga ◽  
John Quiroga ◽  
Luis Mujica ◽  
Rodolfo Villamizar ◽  
Magda Ruiz

In this paper, a guided wave temperature robust PCA-based stress monitoring methodology is proposed. It is based on the analysis of the longitudinal guided wave propagating along the path under stress. Slight changes in the wave are detected by means of PCA via statistical T2 and Q indices. Experimental and numerical simulations of the guided wave propagating in material under different temperatures have shown significant variations in the amplitude and the velocity of the wave. This condition can jeopardize the discrimination of the different stress scenarios detected by the PCA indices. Thus, it is proposed a methodology based on an extended knowledge base, composed by a PCA statistical model for different discrete temperatures to produce a robust classification of stress states under variable environmental conditions. Experimental results have shown a good agreement between the predicted scenarios and the real ones


2021 ◽  
Vol 15 (1) ◽  
pp. 7628-7636
Author(s):  
D. Belakhal ◽  
Kouider Rahmani ◽  
Amel Elkaroui Elkaroui ◽  
Syrine Ben Haj Ayech ◽  
Nejla Mahjoub Saïd ◽  
...  

In the current investigation, numerical study of a thermal jet of asymmetric (rectangular and elliptical) and axisymmetric (circular) geometry was investigated with variable density to verify the impact of the ratio of density and geometry on the generation of entropy. The central jet was brought to different temperatures (194, 293 and 2110 K) to obtain density ratios (0.66, 1 and 7.2) identical to a mixture jet ((Air-CO2), (Air-Air) and (Air-He)), respectively. Solving the three-dimensional numerical resolution of the Navier Stocks for turbulent flow permanent enclosed on the turbulence model K-εstandard was made. The results acquired are compared with that carried out in previous experimental studies, where it was concluded that, the axisymmetric (circular) geometry increases the entropy generation.


1993 ◽  
Vol 256 ◽  
pp. 615-646 ◽  
Author(s):  
Paolo Orlandi ◽  
Roberto Verzicco

Accurate numerical simulations of vortex rings impinging on flat boundaries revealed the same features observed in experiments. The results for the impact with a free-slip wall compared very well with previous numerical simulations that used spectral methods, and were also in qualitative agreement with experiments. The present simulation is mainly devoted to studying the more realistic case of rings interacting with a no-slip wall, experimentally studied by Walker et al. (1987). All the Reynolds numbers studied showed a very good agreement between experiments and simulations, and, at Rev > 1000 the ejection of a new ring from the wall was seen. Axisymmetric simulations demonstrated that vortex pairing is the physical mechanism producing the ejection of the new ring. Three-dimensional simulations were also performed to investigate the effects of azimuthal instabilities. These simulations have confirmed that high-wavenumber instabilities originate in the compression phase of the secondary ring within the primary one. The large instability of the secondary ring has been explained by analysis of the rate-of-strain tensor and vorticity alignment. The differences between passive scalars and the vorticity field have been also investigated.


2012 ◽  
Vol 23 (04) ◽  
pp. 1250030 ◽  
Author(s):  
FAYÇAL HAMMAMI ◽  
NADER BEN-CHEIKH ◽  
ANTONIO CAMPO ◽  
BRAHIM BEN-BEYA ◽  
TAIEB LILI

In this work, a numerical study devoted to the two-dimensional and three-dimensional flow of a viscous, incompressible fluid inside a lid-driven cavity is undertaking. All transport equations are solved using the finite volume formulation on a staggered grid system and multi-grid acceleration. Quantitative aspects of two and three-dimensional flows in a lid-driven cavity for Reynolds number Re = 1000 show good agreement with benchmark results. An analysis of the flow evolution demonstrates that, with increments in Re beyond a certain critical value Rec, the steady flow becomes unstable and bifurcates into unsteady flow. It is observed that the transition from steadiness to unsteadiness follows the classical Hopf bifurcation. The time-dependent velocity distribution is studied in detail and the critical Reynolds number is localized for both 2D and 3D cases. Benchmark solutions for 2D and 3D lid-driven cavity flows are performed for Re = 1500 and 6000.


Author(s):  
Azita Soleymani ◽  
Eveliina Takasuo ◽  
Piroz Zamankhan ◽  
William Polashenski

Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through random packing of nonoverlapping spheres at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier-Stokes equations in three-dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study (Fand et al., 1987). This observation suggests that no transition to turbulence could occur in the range of Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of the lateral dispersivity of solute continuously injected into a three-dimensional bounded granular bed at moderate Peclet numbers. Lateral fluid dispersion coefficients are calculated by comparing the concentration profiles obtained from numerical and analytical methods. Comparing the present numerical results with data available in the literature, no evidence has been found to support the speculations by others for a transition from laminar to turbulent regimes in porous media at a critical Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document