scholarly journals Acoustic competition within a tropical bird community: the case of the Resplendent Quetzal Pharomachrus mocinno in Guatemala

2021 ◽  
pp. 1-11
Author(s):  
Pablo Bolaños-Sittler ◽  
Thierry Aubin ◽  
Andrea Padilla ◽  
Jérôme Sueur

ABSTRACT The structure of ecological communities is thought to be mainly driven by competition processes between species. One special case of resource shaping community dynamics is the acoustic space. However, the acoustic communities have been rarely described for tropical birds. Here, we aimed at estimating acoustic competition between the iconic species Pharomachrus mocinno and the other bird species occupying the same habitat. An acoustic survey was conducted in a cloud forest in Guatemala for 17 days in six simultaneous recording sites. All species occurring in the same frequency bandwidth were identified, and the acoustic overlapping between P. mocinno and these species was estimated. Eighteen species were identified as acoustic competitors. Ecological traits and phylogenetic distance were defined for all species. The rate of acoustic competition between P. mocinno and other species was related to different ecological traits and competition for resources. The acoustic overlap was high with species competing for similar food resources and phylogenetically close species and low with predator species and phylogenetically distant species. These unique observations provide new behavioural and ecological information that might be useful for the knowledge of this species and the cloud forest.

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 487
Author(s):  
Lillian Collins ◽  
Grant D. Paton ◽  
Sara A. Gagné

The urbanization of landscapes filters bird communities to favor particular species traits, driven in part by the changes that homeowners make to the amount and quality of habitat in yards. We suggest that an ultimate driver of these proximate mechanisms underlying bird community change with respect to urbanization is the likeability of species traits by urban residents. We hypothesize that bird species likeability, modulated by species traits, influences the degree to which homeowners alter the availability and quality of habitat on their properties and thereby affects species population sizes in urbanized landscapes. We refer to this new hypothesis as the Likeable, therefore Abundant Hypothesis. The Likeable, therefore Abundant Hypothesis predicts that (1) bird species likeability varies with species morphological and behavioral traits, (2) homeowners use trait-based likeability as a motivator to modify habitat availability and quality on their properties, and (3) residential habitat availability and quality influences species populations at landscape scales. We tested the first prediction of the Likeable, therefore Abundant Hypothesis using a survey of 298 undergraduate students at the University of North Carolina at Charlotte who were asked to rank their preferences for 85 forest generalist and edge/open country songbird species grouped according to 10 morphological and behavioral traits. Survey respondents preferred very small, primarily blue or black species that are insectivorous, aerial or bark foragers, residents, and culturally unimportant. On the other hand, respondents disliked large or very large, primarily yellow or orange species that forage on the ground and/or forage by flycatching, are migratory, and are culturally important. If the Likeable, therefore Abundant Hypothesis is true, natural resource managers and planners could capitalize on the high likeability of species that are nevertheless negatively affected by urbanization to convince homeowners and residents to actively manage their properties for species conservation.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 150
Author(s):  
Lance Jay Roberts ◽  
Ryan Burnett ◽  
Alissa Fogg

Silvicultural treatments, fire, and insect outbreaks are the primary disturbance events currently affecting forests in the Sierra Nevada Mountains of California, a region where plants and wildlife are highly adapted to a frequent-fire disturbance regime that has been suppressed for decades. Although the effects of both fire and silviculture on wildlife have been studied by many, there are few studies that directly compare their long-term effects on wildlife communities. We conducted avian point counts from 2010 to 2019 at 1987 in situ field survey locations across eight national forests and collected fire and silvicultural treatment data from 1987 to 2016, resulting in a 20-year post-disturbance chronosequence. We evaluated two categories of fire severity in comparison to silvicultural management (largely pre-commercial and commercial thinning treatments) as well as undisturbed locations to model their influences on abundances of 71 breeding bird species. More species (48% of the community) reached peak abundance at moderate-high-severity-fire locations than at low-severity fire (8%), silvicultural management (16%), or undisturbed (13%) locations. Total community abundance was highest in undisturbed dense forests as well as in the first few years after silvicultural management and lowest in the first few years after moderate-high-severity fire, then abundance in all types of disturbed habitats was similar by 10 years after disturbance. Even though the total community abundance was relatively low in moderate-high-severity-fire habitats, species diversity was the highest. Moderate-high-severity fire supported a unique portion of the avian community, while low-severity fire and silvicultural management were relatively similar. We conclude that a significant portion of the bird community in the Sierra Nevada region is dependent on moderate-high-severity fire and thus recommend that a prescribed and managed wildfire program that incorporates a variety of fire effects will best maintain biodiversity in this region.


Biologia ◽  
2012 ◽  
Vol 67 (4) ◽  
Author(s):  
Archana Naithani ◽  
Dinesh Bhatt

AbstractIn the Indian subcontinent there is hardly any study that compares the bird community structure of urban/suburban areas with those of forest habitat. The present survey identified diverse assemblages of birds in the Pauri district at different elevations. A total of 125 bird species belonging to 40 families including two least count species (Lophura leucomelanos and Pucrasia marcolopha) were recorded during this survey in the forest and urbanized habitats of Pauri District (Garhwal Hiamalaya) of Uttarakhand state, India. The high elevation (Pauri 1600–2100 m a.s.l.), mid elevation (Srikot-Khanda 900–1300 m a.s.l.) and low elevation (Srinagar 500–900 m a.s.l.) contributed 88.8%, 63.2% and 58.4% of the total species respectively. Rarefaction analysis and Shannon diversity index showed that the high elevation forest habitat had highest bird species richness (BSR) and bird species diversity (BSD) followed by the mid and then the low elevation forests. BSR and BSD fluctuated across seasons at all elevations but not across habitat types. Present study provides a base line data about avian community composition in urbanized and natural habitats along altitudinal gradient in the study area. This information may be useful to the conservation biologists for the better management and conservation of the avifauna in the Western Himalaya, a part of one of the hot biodiversity spots of the world.


1998 ◽  
Vol 76 (2) ◽  
pp. 278-287 ◽  
Author(s):  
J D Matheson ◽  
D W Larson

Cliffs along the Niagara Escarpment in Ontario, Canada, support a long, narrow presettlement forest that includes three distinct geomorphic and vegetation zones: cliff edge, cliff face, and talus slope. This unique landform provides an opportunity to evaluate differences in bird communities between the escarpment and adjacent forest relative to habitat features. We sampled forest birds 12 times during the summer of 1994 in plots located in plateau forests, on talus slope, at cliff edges, and on cliff faces. Eleven habitat variables considered important to birds were also sampled in the plots. We arranged plots along six randomly spaced transects at a south site and a north site. Both sites had the consistent habitat heterogeneity considered important to birds. Bird species richness and composition responded to this heterogeneity, but differently at each site: plateau deciduous forests always had the lowest richness and the simplest species composition, whereas both cliff edges and talus slopes had a higher diversity of birds. Cliff faces had large numbers of species in the south but smaller numbers in the north. Escarpment zones form a habitat mosaic that supports many species not found in the adjacent forest and is consistent with the effect of habitat edge. The results suggest that cliffs represent a significant additive influence on avian biodiversity, even when the cliff is a very narrow component of the landscape.


2010 ◽  
Vol 70 (2) ◽  
pp. 243-254 ◽  
Author(s):  
LT Manica ◽  
M Telles ◽  
MM Dias

Bird species richness is an important measure for monitoring biodiversity changes. We analysed avifauna richness and composition in a 472 ha protected cerrado fragment and surroundings at Fazenda Canchim (RL-CPPSE), São Carlos, in the State of São Paulo (SP). We carried out 95.1 hours of observation (22 visits) at irregular intervals from May 2004 to December 2006. Qualitative surveys were done walking through tracks inside the fragment and on the roads at its edge. We recorded 160 species, six of which were endemic to Cerrado domain, 22 migratory, seven threatened within the State of São Paulo, and two globally threatened. We found 28 species in the cerradão, 110 in the cerrado sensu stricto, 13 in the gallery forest, 26 in the reservoir border, 26 in pasturelands and sugar cane monoculture and 55 in an anthropic area. Most of the species had low frequency of occurrence in all vegetation forms. Insectivores were the major trophic category (46.9%), which is typical in tropical regions, and it is also related to resource availability. Omnivores followed with 19.4%, granivores with 8.8% and frugivores with 7.5%. We conclude that, despite its size and conservation status, our study area has a remarkable bird community and must be considered as a priority conservation area to preserve bird species in Sao Paulo State.


2019 ◽  
Vol 4 (2) ◽  
pp. 75-83
Author(s):  
Federico Morelli ◽  
Zbigniew Kwieciński ◽  
Piotr Indykiewicz ◽  
Łukasz Jankowiak ◽  
Paweł Szymański ◽  
...  

Abstract Farmland landscapes are recognized as important ecosystems, not only for their rich biodiversity but equally so for the human beings who live and work in these places. However, biodiversity varies among sites (spatial change) and among seasons (temporal change). In this work, we tested the hypothesis that bird diversity hotspots distribution for breeding is congruent with bird diversity hotspots for wintering season, focusing also the representation of protected areas for the conservation of local hotspots. We proposed a framework based on the use of species richness, functional diversity, and evolutionary distinctiveness to characterize avian communities. Although our findings show that the spatial distribution of local bird hotspots differed slightly between seasons, the protected areas’ representation was similar in both seasons. Protected areas covered 65% of the most important zones for breeding and 71% for the wintering season in the farmland studied. Functional diversity showed similar patterns as did bird species richness, but this measure can be most effective for highlighting differences on bird community composition. Evolutionary distinctiveness was less congruent with species richness and functional diversity, among seasons. Our findings suggest that inter-seasonal spatial congruence of local hotspots can be considered as suitable areas upon which to concentrate greater conservation efforts. However, even considering the relative congruence of avian diversity metrics at a local spatial scale, simultaneous analysis of protected areas while inter-seasonally considering hotspots, can provide a more complete representation of ecosystems for assessing the conservation status and designating priority areas.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1811
Author(s):  
John M. Humphreys ◽  
Angela M. Pelzel-McCluskey ◽  
Lee W. Cohnstaedt ◽  
Bethany L. McGregor ◽  
Kathryn A. Hanley ◽  
...  

Mosquito-borne West Nile virus (WNV) is the causative agent of West Nile disease in humans, horses, and some bird species. Since the initial introduction of WNV to the United States (US), approximately 30,000 horses have been impacted by West Nile neurologic disease and hundreds of additional horses are infected each year. Research describing the drivers of West Nile disease in horses is greatly needed to better anticipate the spatial and temporal extent of disease risk, improve disease surveillance, and alleviate future economic impacts to the equine industry and private horse owners. To help meet this need, we integrated techniques from spatiotemporal epidemiology, eco-phylogenetics, and distributional ecology to assess West Nile disease risk in horses throughout the contiguous US. Our integrated approach considered horse abundance and virus exposure, vector and host distributions, and a variety of extrinsic climatic, socio-economic, and environmental risk factors. Birds are WNV reservoir hosts, and therefore we quantified avian host community dynamics across the continental US to show intra-annual variability in host phylogenetic structure and demonstrate host phylodiversity as a mechanism for virus amplification in time and virus dilution in space. We identified drought as a potential amplifier of virus transmission and demonstrated the importance of accounting for spatial non-stationarity when quantifying interaction between disease risk and meteorological influences such as temperature and precipitation. Our results delineated the timing and location of several areas at high risk of West Nile disease and can be used to prioritize vaccination programs and optimize virus surveillance and monitoring.


Author(s):  
Noah Bolohan ◽  
Victor LeBlanc ◽  
Frithjof Lutscher

In ecological communities, the behaviour of individuals and the interaction between species may change between seasons, yet this seasonal variation is often not represented explicitly in mathematical models. As global change is predicted to alter season length and other climatic aspects, such seasonal variation needs to be included in models in order to make reasonable predictions for community dynamics. The resulting mathematical descriptions are nonautonomous models with a large number of parameters, and are therefore challenging to analyze. We present a model for two predators and one prey, whereby one predator switches hunting behaviour to seasonally include alternative prey when available. We use a combination of temporal averaging and invasion analysis to derive simplified models and determine the behaviour of the system, in particular to gain insight into conditions under which the two predators can coexist in a changing climate. We compare our results with numerical simulations of the temporally varying model.


2006 ◽  
Vol 66 (2a) ◽  
pp. 393-404 ◽  
Author(s):  
J. E. C. Figueira ◽  
R. Cintra ◽  
L. R. Viana ◽  
C. Yamashita

Analysis of a three-year bird survey in the pantanal of Poconé revealed that most of the resident and seasonal birds are habitat generalists, using two or more habitats. In this study, previously sampled habitats were ranked in relation to species richness and stability (as measured by the ratio of seasonal to resident species). In all, nine habitats were grouped into three categories; results are as follows: 1) forests: more species-rich and more stable; 2) cerrado: intermediate levels; and 3) aquatic: less species-rich and less stable. The number of seasonal species remained relatively constant in forests throughout the year, while increasing in the other habitats during the dry season. The abundance of resident species seems to be related to species use of multiple habitats. Although many species were found to be habitat generalists, we discuss possible consequences of habitat loss and other human impacts on efforts to conserve this important bird community.


Sign in / Sign up

Export Citation Format

Share Document