The effect of cereal carbohydrate supplementation on intake, rumen fermentation characteristics and digestibility in steers fed on grass silage

1996 ◽  
Vol 1996 ◽  
pp. 43-43
Author(s):  
H.J. Kim ◽  
W.J. Maeng ◽  
H. Park ◽  
M.A. Neville ◽  
R.T. Evans ◽  
...  

Synchronising the availability of energy and nitrogen to the rumen microbes is considered to be important for enhancing output of microbial protein from the rumen. This is particularly relevant to diets based on grass silage (Chamberlain and Choung, 1995). In the rumen ammonia, is rapidly released from the substantial content of non-protein nitrogen compounds in grass silage and this requires a similarly rapid release of energy in the rumen to ensure efficient capture of ammonia. Different sources of carbohydrate may enhance rumen function to varying degrees. The aim of this study was to examine the effects of various carbohydrate sources on intake, rumen fermentation characteristics and digestibility in steers fed on grass silage.

1996 ◽  
Vol 1996 ◽  
pp. 214-214
Author(s):  
J.W. Joo ◽  
W.J. Maeng ◽  
J.E. Cockburn ◽  
A.B. McAllan ◽  
H. Park ◽  
...  

Grass silage is considered to be asynchronous in the supply of energy and nitrogen to the rumen microbes. It is thought that this contributes towards the reduced quantities and efficiencies of rumen microbial protein synthesis frequently observed in animals feed on such diets (Beever, 1993). Additional energy from carbohydrates may help to ameliorate this situation. A rumen simulated continuous culture (RSCC) system was used to study the influence of supplementation of grass silage with various carbohydrate sources on rumen microbial activity.


1992 ◽  
Vol 1 (2) ◽  
pp. 177-188
Author(s):  
Ilmo Aronen ◽  
Aila Vanhatalo

A 4 x 4 latin square experiment was carried out with four growing heifers, each with a rumen cannula and a simple T-cannula inserted in the proximal duodenum. The purpose was to study the effects of the supplementation of concentrate to grass silage on rumen fermentation, microbial protein synthesis and digestion of organic matter (OM), fibre components and N. The diets were composed of grass silage alone (S); grass silage and barley (SBU, 50:50 % on dry matter (DM) basis); and grass silage, barley and protein concentrate based either on rapeseed meal (SBR), or meat and bone meal (SBM) (50:40:10). To make the diets isonitrogenous, 23 g of urea was given with the SBU diet. The supplementation of concentrates, irrespective of their type, increased the average rumen ammonia-N and total concentration of volatile fatty acids (VFA) and decreased the molar proportion of acetate. Inclusion of concentrates in the diet had a negative effect on the digestibility of cell wall constituents. The production of microbial protein and the efficiency of microbial protein synthesis were not affected by the diet. It appears, therefore, that the supply of nitrogenous constituents for rumen microbes through ruminally degraded protein was adequate in silage feeding, and that no extra benefit, at the utilized level of application, was gained by the supplementation of any of the concentrates.


2015 ◽  
Vol 15 (2) ◽  
pp. 289-305 ◽  
Author(s):  
Maja Fijałkowska ◽  
Barbara Pysera ◽  
Krzysztof Lipiński ◽  
Danuta Strusińska

Abstract Losses of crude protein during ensiling of herbages, in contrast to carbohydrates, do not affect the reduction of its content; their form is changed into greater solubility non-protein compounds and also highly degraded forms, which lower the efficiency of the microbial protein synthesis in the rumen. These processes are accompanied by a change of amino acid composition of herbage protein and decrease in intestinal digestibility of protein from feeds as a result of the formation of indigestible complexes with carbohydrates (ADIN). Reduction of protein degradation in silages is achieved by accelerated acidity through addition of acids or dominance of homofermentative bacteria. The positive effects of fermentation inhibitors or sorbents use, as well as the wilting of raw material on the level and rate of protein degradation were demonstrated by many researchers. A greater contribution of protein nitrogen and reduction of deamination in silages can also be obtained by using bacteria inoculants. Increasing the proportion of protein nitrogen is accompanied by the improved efficiency of microbial protein synthesis.


1992 ◽  
Vol 119 (3) ◽  
pp. 411-418 ◽  
Author(s):  
S. Jaakkola ◽  
P. Huhtanen

SUMMARYFour Friesian bulls with ruminal and duodenal cannulae were used in a 4 × 4 Latin square experiment to study the effects of lactic acid (LA) on rumen fermentation and microbial protein synthesis. On a dry matter (DM) basis (g/kg), the basal diet comprised grass silage (700), barley (240) and rapeseed meal (60) and it was given at the rate of 7·1 kg DM/day. LA was infused continuously into the rumen at the rates of 0 (L0), 40 (L40), 80 (L80) or 120 (L120) g/kg basal diet DM.The molar proportion of propionate in the rumen volatile fatty acids (VFA) increased linearly (P < 0.001) and that of acetate, isovalerate, caproate (P < 0.01) and isobutyrate (P < 005) decreased linearly with an increasing rate of LA infusion. At the same time there was a linear decrease (P < 0.05) in the number of rumen protozoa. When the metabolic fate of infused LA was calculated on a molar basis, 0.21 of lactic acid was converted to acetate, 0·52 to propionate and 0.27 to butyrate.Infusion of LA into the rumen had no effect on the site or extent of the digestion of basal diet organic matter (OM) and neutral detergent fibre (NDF). LA diets tended to have a lower microbial N flow at the duodenum (71·4 v. 85·8 g N/day) and lower synthetic efficiency in the rumen (14·4 v. 20.4 g N/kg OM apparently fermented) when compared with the control diet. The ratio of duodenal non-ammonia N to N intake was highest with the control diet and lowest with L40, the effect of the LA rate being quadratic (P < 0·05). The results suggest that propionate was the main end-product of lactic acid fermentation in the rumen with the grass silage based diet. Lactic acid had no value as an energy source for microbial protein synthesis.


Author(s):  
L. A. Sinclair ◽  
P. C. Garnsworthy ◽  
J. R. Newbold ◽  
P. J. Buttery

The recently introduced metabolisable protein system for ruminants (Webster 1992) relates microbial nitrogen production to daily supply of fermentable metabolisable energy and effective rumen degradable protein but does not consider the effect of the pattern of supply of nutrients to rumen microbes on their efficiency and growth. However, synchronising the hourly supply of nitrogen and energy yielding substrates to rumen micro-organisms has been shown to increase the efficiency of microbial protein synthesis (Sinclair et al. 1993). The objective of the current experiment was to examine the effects of synchronising the hourly supply of energy and nitrogen in diets with a similar carbohydrate composition but differing in the rate of protein degradation, on rumen fermentation and microbial protein synthesis in sheep.


2021 ◽  
Vol 9 (5) ◽  
pp. 1013
Author(s):  
Karina Arellano-Ayala ◽  
Juhwan Lim ◽  
Subin Yeo ◽  
Jorge Enrique Vazquez Bucheli ◽  
Svetoslav Dimitrov Todorov ◽  
...  

Preservation of probiotics by lyophilization is considered a method of choice for developing stable products. However, both direct consumption and reconstitution of dehydrated probiotic preparations before application “compromise” the survival and functional characteristics of the microorganisms under the stress of the upper gastro-intestinal tract. We evaluated the impact of different food additives on the viability, mucin adhesion, and zeta potential of a freeze-dried putative probiotic, Lactiplantibacillus (Lp.) plantarum HAC03. HAC03-compatible ingredients for the formulation of ten rehydration mixtures could be selected. Elevated efficacy was achieved by the B-active formulation, a mixture of non-protein nitrogen compounds, sugars, and salts. The survival of Lp. plantarum HAC03 increased by 36.36% compared rehydration with distilled water (4.92%) after passing simulated gastro-intestinal stress conditions. Cell viability determined by plate counting was confirmed by flow cytometry. B-active formulation also influenced Lp. plantarum HAC03 functionality by increasing its adherence to a Caco-2 cell-line and by changing the bacterial surface charge, measured as zeta potential.Hydrophobicity, mucin adhesion and immunomodulatory properties of Lp. plantarum HAC03 were not affected by the B-active formulation. The rehydration medium also effectively protected Lp. plantarum ATCC14917, Lp. plantarum 299v, Latilactobacillus sakei (Lt.) HAC11, Lacticaseibacillus (Lc.) paracasei 532, Enterococcus faecium 200, and Lc. rhamnosus BFE5263.


Sign in / Sign up

Export Citation Format

Share Document