scholarly journals Molecular Dynamics of a Crystal

1904 ◽  
Vol 24 ◽  
pp. 205-224
Author(s):  
Lord Kelvin

§ 1. The object of this communication is to partially realise the hope expressed at the end of my paper of July 1 and July 15, 1889, on the “Molecular Constitution of Matter”:—“The mathematical investigation must be deferred for a future communication, when I hope to give it with some further developments.” The italics are of present date.Following the ideas and principles suggested in §§ 14–20 of that paper (referred to henceforth for brevity as M. C. M.), let us first find the work required to separate all the atoms of a homogeneous assemblage of a great number n of molecules to infinite distances from one another. Each molecule may be a single atom, or it may be a group of i atoms (similar to one another or dissimilar, as the case may be) which makes the whole assemblage a group of i assemblages, each of n single atoms.

2020 ◽  
Author(s):  
Weihong Lai ◽  
Heng Wang ◽  
Quan jiang ◽  
Zichao Yan ◽  
Hanwen Liu ◽  
...  

<p>Herein, we develop a non-selective charge compensation strategy to prepare multi-single-atom doped carbon (MSAC) in which a sodium p-toluenesulfonate (PTS-Na) doped polypyrrole (S-PPy) polymer is designed to anchor discretionary mixtures of multiple metal cations, including iron (Fe<sup>3+</sup>), cobalt (Co<sup>3+</sup>), ruthenium (Ru<sup>3+</sup>), palladium (Pd<sup>2+</sup>), indium (In<sup>3+</sup>), iridium (Ir<sup>2+</sup>), and platinum (Pt<sup>2+</sup>) . As illustrated in Figure 1, the carbon surface can be tuned with different level of compositional complexities, including unary Pt<sub>1</sub>@NC, binary (MSAC-2, (PtFe)<sub>1</sub>@NC), ternary (MSAC-3, (PtFeIr)<sub>1</sub>@NC), quaternary (MSAC-4, (PtFeIrRu)<sub>1</sub>@NC), quinary (MSAC-5, (PtFeIrRuCo)<sub>1</sub>@NC), senary (MSAC-6, (PtFeIrRuCoPd)<sub>1</sub>@NC), and septenary (MSAC-7, (PtFeIrRuCoPdIn)<sub>1</sub>@NC) samples. The structural evolution of carbon surface dictates the activities of both ORR and HER. The senary MSAC-6 achieves the ORR mass activity of 18.1 A·mg<sub>metal</sub><sup>-1</sup> at 0.9 V (Vs reversible hydrogen electrode (RHE)) over 30K cycles, which is 164 times higher than that of commercial Pt/C. The quaternary MSAC-4 presented a comparable HER catalytic capability with that of Pt/C. These results indicate that the highly complexed carbon surface can enhance its ability over general electrochemical catalytic reactions. The mechanisms regarding of the ORR and HER activities of the alternated carbon surface are also theoretically and experimentally investigated in this work, showing that the synergistic effects amongst the co-doped atoms can activate or inactivate certain single-atom sites.</p>


Author(s):  
Jingwen Pan ◽  
Baoyu Gao ◽  
Pijun Duan ◽  
Kangying Guo ◽  
Muhammad Akram ◽  
...  

Nonradical pathway-based persulfate oxidation technology is considered to be a promising method for high-salinity organic wastewater treatment.


2021 ◽  
Author(s):  
Lei Luo ◽  
Lei Fu ◽  
Huifen Liu ◽  
Youxun Xu ◽  
Jialiang Xing ◽  
...  

Abstract Methane (CH4) oxidation to high value chemicals under mild conditions through photocatalysis is a sustainable and appealing pathway, nevertheless confronting the critical issues on both conversion and selectivity. Herein, under visible irradiation (420 nm), the synergy of palladium (Pd) atom cocatalyst and oxygen vacancies (OVs) on In2O3 nanorods enabled superior photocatalytic CH4 activation by O2. The optimised catalyst reached ca. 100 µmol·h− 1 of C1 oxygenates, with a selectivity of primary products (CH3OH and CH3OOH) up to 82.5 %. Mechanism investigation elucidated that such superior photocatalysis was induced by the dedicated function of Pd single atoms and oxygen vacancies on boosting hole and electron transfer pathway, respectively. O2 was proven to be the only oxygen source for CH3OH production, while H2O acted as the promoter for efficient CH4 activation through ·OH production and facilitated product desorption as indicated by DFT modelling. This work thus provides new understandings on simultaneous regulation of activity and selectivity by the significant synergy of single atom cocatalysts and oxygen vacancies.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Limei Qin ◽  
Jie Gan ◽  
Dechao Niu ◽  
Yueqiang Cao ◽  
Xuezhi Duan ◽  
...  

AbstractPursuing and developing effective methodologies to construct highly active catalytic sites to maximize the atomic and energy efficiency by material engineering are attractive. Relative to the tremendous researches of carbon-based single atom systems, the construction of bio-applicable single atom materials is still in its infancy. Herein, we propose a facile and general interfacial-confined coordination strategy to construct high-quality single-atom nanotherapeutic agent with Fe single atoms being anchored on defective carbon dots confined in a biocompatible mesoporous silica nanoreactor. Furthermore, the efficient energy conversion capability of silica-based Fe single atoms system has been demonstrated on the basis of the exogenous physical photo irradiation and endogenous biochemical reactive oxygen species stimulus in the confined mesoporous network. More importantly, the highest photothermal conversion efficiency with the mechanism of increased electron density and narrow bandgap of this single atom structure in defective carbon was proposed by the theoretical DFT calculations. The present methodology provides a scientific paradigm to design and develop versatile single atom nanotherapeutics with adjustable metal components and tune the corresponding reactions for safe and efficient tumor therapeutic strategy.


Author(s):  
Lin Gong ◽  
Ji Sun ◽  
Yousong Liu ◽  
Guangcheng Yang

The use of solar energy to drive efficient CO2 cycloaddition conversion under mild reaction conditions is highly desired but remains a significant challenge. In this communication, a Zn single-atoms-loaded N-doped...


2020 ◽  
Vol 8 (33) ◽  
pp. 17065-17077
Author(s):  
Dongxiao Kan ◽  
Ruqian Lian ◽  
Dashuai Wang ◽  
Xilin Zhang ◽  
Jing Xu ◽  
...  

Pt single atoms doped on V-, Ti-, Nb-, and Cr-based MXenes presented high catalytic performances, especially the Nb- and Cr-based ones, which were promising bifunctional ORR/OER catalysts.


2019 ◽  
Vol 5 (8) ◽  
pp. eaaw2322 ◽  
Author(s):  
Peng Peng ◽  
Lei Shi ◽  
Feng Huo ◽  
Chunxia Mi ◽  
Xiaohong Wu ◽  
...  

Nitrogen-coordinated single-atom catalysts (SACs) have emerged as a frontier for electrocatalysis (such as oxygen reduction) with maximized atom utilization and highly catalytic activity. The precise design and operable synthesis of SACs are vital for practical applications but remain challenging because the commonly used high-temperature treatments always result in unpredictable structural changes and randomly created single atoms. Here, we develop a pyrolysis-free synthetic approach to prepare SACs with a high electrocatalytic activity using a fully π-conjugated iron phthalocyanine (FePc)–rich covalent organic framework (COF). Instead of randomly creating Fe-nitrogen moieties on a carbon matrix (Fe-N-C) through pyrolysis, we rivet the atomically well-designed Fe-N-C centers via intermolecular interactions between the COF network and the graphene matrix. The as-synthesized catalysts demonstrate exceptional kinetic current density in oxygen reduction catalysis (four times higher than the benchmark Pt/C) and superior power density and cycling stability in Zn-air batteries compared with Pt/C as air electrodes.


2020 ◽  
Vol 10 (19) ◽  
pp. 6420-6448 ◽  
Author(s):  
Mohd. Khalid ◽  
Prerna A. Bhardwaj ◽  
Ana M. B. Honorato ◽  
Hamilton Varela

Recent advances of single-atom-based carbon nanomaterials for the ORR, OER, HER, and bifunctional electrocatalysis are covered in this review article.


2011 ◽  
Vol 17 (6) ◽  
pp. 847-858 ◽  
Author(s):  
Michael M.J. Treacy

AbstractA simple parameterization is presented for the elastic electron scattering cross sections from single atoms into the annular dark-field (ADF) detector of a scanning transmission electron microscope (STEM). The dependence on atomic number, Z, and inner reciprocal radius of the annular detector, q0, of the cross section σ(Z,q0) is expressed by the empirical relationwhere A(q0) is the cross section for hydrogen (Z = 1), and the detector is assumed to have a large outer reciprocal radius. Using electron elastic scattering factors determined from relativistic Hartree-Fock simulations of the atomic electron charge density, values of the exponent n(Z,q0) are tabulated as a function of Z and q0, for STEM probe sizes of 1.0 and 2.0 Å.Comparison with recently published experimental data for single-atom scattering [Krivanek et al. (2010). Nature464, 571–574] suggests that experimentally measured exponent values are systematically lower than the values predicted for elastic scattering from low-Z atoms. It is proposed that this discrepancy arises from the inelastic scattering contribution to the ADF signal. A simple expression is proposed that corrects the exponent n(Z,q0) for inelastic scattering into the annular detector.


2005 ◽  
Vol 93 (4) ◽  
Author(s):  
R. Eichler

SummaryA correlation is established between thermodynamic data for hypothetical macroscopic amounts of elements and experimentally accessible data on gold surfaces. The correlation between the experimentally determined standard adsorption enthalpies of elements on gold surfaces and their standard sublimation enthalpies is shown to be valid over a broad data range for various elements from light noble gases (Kr) up to heavy metals (Pb, Bi). This type of correlation is indispensable to derive thermodynamic data for macroscopic amounts of elements from results of adsorption chromatographic experiments with single atom amounts. It is also necessary to predict the behavior of single atoms from given or estimated thermochemical data. The conditions under which this correlation is valid are elaborated. Finally, predicted data for the elements 112 and 114 are used to link them to the corresponding sublimation or adsorption data. The obtained prediction intervals are of exceptional importance for the design of sophisticated experimental setups for the chemical investigation of transactinide elements on a single atom scale.


Sign in / Sign up

Export Citation Format

Share Document