Very-high spatial resolution analysis in STEM

Author(s):  
A.J. Garratt-Reed

When analyzing a composition profile in a thin foil using a Scanning Transmission Electron Microscope, the measured profile is a convolution of the electron probe diameter, the actual profile and the degree of beam spreading in the sample. While it is possible to show that fractions of a monolayer of segregant are detectable in foils 100 nm thick, similar calculations indicate that if a probe 0.8 nm in diameter is incident upon a foil 20 nm thick, then broadening is insignificant. For example, fig. 1 is a computation (using the method of Hall, et.al) of the predicted measured profile resulting from a real gaussian distribution of chromium in iron, 2.5 nm wide, measured in the conditions just mentioned. Such results indicate that distributions of solutes well under 10 nm in separation should be readily distinguishable from each other.In some pearlitic steels, alloy elements are incompletely partitioned during the pearlite reaction, and subsequently diffuse from the ferrite into the cementite, where they form very narrow (∿ 2 nm wide) enriched zones either side of the cementite plate, which is itself around 10 nm thick.

1998 ◽  
Vol 4 (S2) ◽  
pp. 392-393
Author(s):  
Anthony J. Garratt-Reed ◽  
Graham Cliff ◽  
Peter B. Kenway

A major reason for performing microanalysis in the Field-Emission Gun Scanning Transmission Electron Microscope (FEG-STEM) is the very high spatial resolution of the information obtained. It has been estimated that in ideal cases, energy-dispersive x-ray analysis in such an instrument can provide 0.1 wt.% detection sensitivity for an element in a region about 1.5nm in diameter of a foil about 30nm thick. It is obvious that such performance requires that the instrument be properly adjusted, and hence that the probe-forming characteristics be fully understood.There are three fundamental limits on the minimum size of an electron probe, these being i) the geometrical demagnification of the source, ii) diffraction at the beam-limiting aperture, and iii) spherical aberration in the probe-forming lens. In addition, misalignment of the beam-limiting aperture will result in probe aberrations.


Author(s):  
D. B. Williams

With the development of the scanning transmission electron microscope (STEM) the TEM was transformed into an analytical instrument capable of high resolution microanalysis and diffraction, as well as offering a broad range of imaging techniques. The combination of a < 10 nm electron probe and thin foil specimens permits analytical information to be gained from regions < 50 nm in diameter since beam spreading in thin specimens is of this order. This article will use specific examples to illustrate the possible applications of STEM in the study of materials, as well as the physical limitations of the analysis procedure which are only now being defined.


2001 ◽  
Vol 7 (S2) ◽  
pp. 308-309
Author(s):  
N. D. Browning ◽  
J. P. Buban ◽  
Y. Ito ◽  
R. F. Klie ◽  
Y. Lei

The properties of ceramic oxides being developed for such varied applications as fuel cells, ionic transporting membranes, high-Tc superconductors, ferroelectrics and varistors are dominated by the presence of grain boundaries. Key to controlling the electronic properties of the grain boundaries in these materials is a fundamental understanding of the complex relationship between structure, composition and local electronic structure. The ability to characterize and directly correlate these parameters on the atomic scale is afforded by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM). Furthermore, the recent development of in-situ heating capabilities in the JEOL 201 OF STEM/TEM permits atomic resolution analysis to be performed at elevated temperatures and the interactions of grain boundaries with the oxygen vacancies determined.Figure 1 shows an example of the type of experiment that can be performed using these methods.


Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
J. S. Wall ◽  
J. P. Langmore ◽  
H. Isaacson ◽  
A. V. Crewe

The scanning transmission electron microscope (STEM) constructed by the authors employs a field emission gun and a 1.15 mm focal length magnetic lens to produce a probe on the specimen. The aperture size is chosen to allow one wavelength of spherical aberration at the edge of the objective aperture. Under these conditions the profile of the focused spot is expected to be similar to an Airy intensity distribution with the first zero at the same point but with a peak intensity 80 per cent of that which would be obtained If the lens had no aberration. This condition is attained when the half angle that the incident beam subtends at the specimen, 𝛂 = (4𝛌/Cs)¼


Author(s):  
L. Gandolfi ◽  
J. Reiffel

Calculations have been performed on the contrast obtainable, using the Scanning Transmission Electron Microscope, in the observation of thick specimens. Recent research indicates a revival of an earlier interest in the observation of thin specimens with the view of comparing the attainable contrast using both types of specimens.Potential for biological applications of scanning transmission electron microscopy has led to a proliferation of the literature concerning specimen preparation methods and the controversy over “to stain or not to stain” in combination with the use of the dark field operating mode and the same choice of technique using bright field mode of operation has not yet been resolved.


Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Author(s):  
A. Kosiara ◽  
J. W. Wiggins ◽  
M. Beer

A magnetic spectrometer to be attached to the Johns Hopkins S. T. E. M. is under construction. Its main purpose will be to investigate electron interactions with biological molecules in the energy range of 40 KeV to 100 KeV. The spectrometer is of the type described by Kerwin and by Crewe Its magnetic pole boundary is given by the equationwhere R is the electron curvature radius. In our case, R = 15 cm. The electron beam will be deflected by an angle of 90°. The distance between the electron source and the pole boundary will be 30 cm. A linear fringe field will be generated by a quadrupole field arrangement. This is accomplished by a grounded mirror plate and a 45° taper of the magnetic pole.


Author(s):  
H. Rose

The scanning transmission electron microscope offers the possibility of utilizing inelastically scattered electrons. Use of these electrons in addition to the elastically scattered electrons should reduce the scanning time (dose) Which is necessary to keep the quantum noise below a certain level. Hence it should lower the radiation damage. For high resolution, Where the collection efficiency of elastically scattered electrons is small, the use of Inelastically scattered electrons should become more and more favorable because they can all be detected by means of a spectrometer. Unfortunately, the Inelastic scattering Is a non-localized interaction due to the electron-electron correlation, occurring predominantly at the circumference of the atomic electron cloud.


Author(s):  
Michael Beer ◽  
J. W. Wiggins ◽  
David Woodruff ◽  
Jon Zubin

A high resolution scanning transmission electron microscope of the type developed by A. V. Crewe is under construction in this laboratory. The basic design is completed and construction is under way with completion expected by the end of this year.The optical column of the microscope will consist of a field emission electron source, an accelerating lens, condenser lens, objective lens, diffraction lens, an energy dispersive spectrometer, and three electron detectors. For any accelerating voltage the condenser lens function to provide a parallel beam at the entrance of the objective lens. The diffraction lens is weak and its current will be controlled by the objective lens current to give an electron diffraction pattern size which is independent of small changes in the objective lens current made to achieve focus at the specimen. The objective lens demagnifies the image of the field emission source so that its Gaussian size is small compared to the aberration limit.


Sign in / Sign up

Export Citation Format

Share Document