Changes In The Distribution And Morphology of γ' Precipitate In Neutron Irradiated Pe-16

Author(s):  
P. S. Sklad ◽  
J. Bentley

Nimonic PE-16 is a γ' hardened, austenitic alloy which has been chosen as a candidate for fuel element cladding and structural component applications in future breeder reactors due to its attractive high temperature strength properties and swelling resistance. The γ' phase is an ordered fee structure of LI2 symmetry having a Ni3(Al, Ti) composition, and is generally found as a finely distributed, spherical, coherent precipitate.Cylindrical (∽6 mm diam x ∽10 mm length) specimens were machined from rod and then solution treated at 1313 K for 2 hr followed by an aging treatment of 2 hr at 1073 K plus 16 hr at 973 K. Specimens were irradiated in the EBR-II at temperatures in the range 650 to 823 K and to fluences in the range 1.2 to 4.0 x 1026 n.m-2 (E >0.1 MeV). Details of the swelling and mechanical properties will be reported elsewhere.

Author(s):  
Nao Otaki ◽  
Tomoaki Hamaguchi ◽  
Takahiro Osuki ◽  
Yuhei Suzuki ◽  
Masaki Ueyama ◽  
...  

Abstract In petroleum refinery plants, materials with high sensitization resistance are required. 347AP has particularly been developed for such applications and shows good sensitization resistance owing to its low C content. However, further improvement in high temperature strength is required for high temperature operations in complex refineries, such as delayed cokers. Recently, a new austenitic stainless steel (low C 18Cr-11Ni-3Cu-Mo-Nb-B-N, UNS No. S34752) with high sensitization resistance and high strength at elevated temperatures has been developed. In this study, the mechanical properties and microstructures of several aged specimens will be reported. By conducting several aging heat treatments in the range of 550–750 °C for 300–10,000 h on the developed steel, it was revealed that there were only few coarse precipitates that assumed sigma phase even after aging at 750 °C for 10,000 h. This indicates that the newly developed steel has superior phase stability. The developed steel drastically increased its Vickers hardness by short-term aging treatments. Through transmission electron microscopy observations, the fine precipitates of Cu-rich phase were observed dispersedly in the ruptured specimen. Therefore, the increase in Vickers hardness in short-term aging is possibly owing to the dispersed precipitation of Cu-rich phase. There was further increase in Vickers hardness owing to Z phase precipitation; however, the increment was smaller than that caused by Cu-rich phase. The newly developed alloy demonstrated excellent creep rupture strength even in the long-term tests of approximately 30,000 h, which is attributed to these precipitates.


Author(s):  
D. R. Clarke ◽  
G. Thomas

Grain boundaries have long held a special significance to ceramicists. In part, this has been because it has been impossible until now to actually observe the boundaries themselves. Just as important, however, is the fact that the grain boundaries and their environs have a determing influence on both the mechanisms by which powder compaction occurs during fabrication, and on the overall mechanical properties of the material. One area where the grain boundary plays a particularly important role is in the high temperature strength of hot-pressed ceramics. This is a subject of current interest as extensive efforts are being made to develop ceramics, such as silicon nitride alloys, for high temperature structural applications. In this presentation we describe how the techniques of lattice fringe imaging have made it possible to study the grain boundaries in a number of refractory ceramics, and illustrate some of the findings.


Alloy Digest ◽  
1975 ◽  
Vol 24 (9) ◽  

Abstract BERYLCO NICKEL ALLOY 440 is an age-hardenable nickel-beryllium-titanium alloy that offers high strength, excellent spring properties outstanding formability, good high-temperature mechanical properties, and resistance to corrosion and fatigue. Complex shapes can be produced in the solution-treated (soft) condition and then aged to a minimum tensile strength of 215,500 psi. It is used for mechanical and electrical/electronic components in the temperature range -320 to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-94. Producer or source: Kawecki Berylco Industries Inc.. Originally published September 1964, revised September 1975.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract PRESSURDIE-1 is an air-hardening hot work tool and die steel having high heat resistance and good high temperature strength properties. It is recommended for die casting dies, extrusion and forging dies. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-191. Producer or source: Continental Copper & Steel Industries Inc..


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 384
Author(s):  
Andong Du ◽  
Anders E. W. Jarfors ◽  
Jinchuan Zheng ◽  
Kaikun Wang ◽  
Gegang Yu

The effect of lanthanum (La)+cerium (Ce) addition on the high-temperature strength of an aluminum (Al)–silicon (Si)–copper (Cu)–magnesium (Mg)–iron (Fe)–manganese (Mn) alloy was investigated. A great number of plate-like intermetallics, Al11(Ce, La)3- and blocky α-Al15(Fe, Mn)3Si2-precipitates, were observed. The results showed that the high-temperature mechanical properties depended strongly on the amount and morphology of the intermetallic phases formed. The precipitated tiny Al11(Ce, La)3 and α-Al15(Fe, Mn)3Si2 both contributed to the high-temperature mechanical properties, especially at 300 °C and 400 °C. The formation of coarse plate-like Al11(Ce, La)3, at the highest (Ce-La) additions, reduced the mechanical properties at (≤300) ℃ and improved the properties at 400 ℃. Analysis of the strengthening mechanisms revealed that the load-bearing mechanism was the main contributing mechanism with no contribution from thermal-expansion mismatch effects. Strain hardening had a minor contribution to the tensile strength at high-temperature.


2017 ◽  
Vol 265 ◽  
pp. 456-462 ◽  
Author(s):  
P.L. Reznik ◽  
Mikhail Lobanov

Studies have been conducted as to the effect of Cu, Mn, Fe concentration changes in Al-Cu-Mn-Fe-Ti alloy, the conditions of thermal and deformational treatment of ingots and extruded rods 40 mm in diameter on the microstructure, phase composition and mechanical properties. It has been determined that changing Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy to Al-6.5Cu-0.7Mn-0.11Fe-0.15Ti causes an increase in the strength characteristics of extruded rods at the room temperature both after molding and in tempered and aged conditions, irrespective of the conditions of thermal treatment of the initial ingot (low-temperature annealing 420 °С for 2 h, or high-temperature annealing at 530 °С for 12 h). Increasing the extruding temperature from 330 to 480 °С, along with increasing Cu, Mn and decreasing Fe in the alloy Al-Cu-Mn-Ti, is accompanied by the increased level of ultimate strength in a quenched condition by 25% to 410 MPa, irrespective of the annealing conditions of the original ingot. An opportunity to apply the Al-6.3Cu-0.3Mn-0.17Fe-0.15Ti alloy with low-temperature annealing at 420 °С for 2 h and the molding temperature of 330 °С has been found to produce rods where, in the condition of full thermal treatment (tempering at 535 °С + aging at 200 °С for 8 hours), a structure is formed that ensures satisfactory characteristics of high temperature strength by resisting to fracture for more than 100 hours at 300 °С and 70 MPa.


1981 ◽  
Vol 23 (6) ◽  
pp. 387-392
Author(s):  
A. V. Logunov ◽  
N. V. Petrushin ◽  
E. A. Kuleshova ◽  
Yu. M. Dolzhanskii

1991 ◽  
Vol 6 (12) ◽  
pp. 2653-2659 ◽  
Author(s):  
G.M. Pharr ◽  
S.V. Courington ◽  
J. Wadsworth ◽  
T.G. Nieh

The mechanical properties of nickel beryllide, NiBe, have been investigated in the temperature range 20–820 °C. The room temperature properties were studied using tension, bending, and compression tests, while the elevated temperature properties were characterized in compression only. NiBe exhibits some ductility at room temperature; the strains to failure in tension and compression are 1.3% and 13%, respectively. Fracture is controlled primarily by the cohesive strength of grain boundaries. At high temperatures, NiBe is readily deformable—strains in excess of 30% can be achieved at temperatures as low as 400 °C. Strain hardening rates are high, and the flow stress decreases monotonically with temperature. The high temperature strength of NiBe is as good or better than that of NiAl, but not quite as good as CoAl.


1998 ◽  
Vol 120 (1) ◽  
pp. 172-178 ◽  
Author(s):  
N. Nakazawa ◽  
H. Ogita ◽  
M. Takahashi ◽  
T. Yoshizawa ◽  
Y. Mori

The development of turbine components for the automotive 100 kW ceramic gas turbine has entered the final stage of the seven-year project and is making satisfactory progress toward the goals. We have attained the interim targets of the aerodynamic performances and have been carrying out tests to further improve efficiency. As for ceramic parts, we have changed the material of the turbine rotor to a new one that is excellent in long-sustained and high-temperature strength properties, and have confirmed substantial strength at high temperature through hot-spin tests. After evaluating blade-vibration stress through analyses and experiments, we completed an endurance evaluation at 1200°C (1473 K) TIT (Turbine Inlet Gas Temperature) and a rated speed of 100,000 rpm. We are now carrying out endurance tests at 1350°C (1623 K) TIT. For ceramic stationary parts, we already finished the evaluations at 1200°C TIT and are also conducting an endurance test at 1350°C TIT. Using these parts in a full-assembly test, together with other elements, we confirmed that they cause no functional problem in tests performed at 1200°C TIT level up to the rated speed (100,000 rpm), and are evaluating their performances.


Sign in / Sign up

Export Citation Format

Share Document