A Field Ion Observation of a Grain Boundary Node

Author(s):  
H. C. Eaton

In recent years there has been considerable interest in relating the structure of high angle grain boundaries to the properties of polycrystalline materials. It has been firmly established that these interfaces exhibit a highly complex, and often regular structure on the near atomic scale which can control the chemical or mechanical macro-behavior of the aggregate. However, unlike external surfaces, which can be probed by conventional surface spectroscopic and diffraction techniques, the internal structure of the grain boundary is usually only accessible with the transmission electron microscope. Interpretation of such images is at best complex and oftentimes the fine-scale structure is not observed due to resolution limitation of conventional imaging modes. The field ion microscope (FIM), on the other hand, offers both high resolution and a more direct imaging process. The FIM has been used in numerous grain boundary observations and more recently the results have been improved by computer reconstruction techniques providing detailed topographies of the interface. Presented in the present work is a computer reconstruction of the point of junction between three grains and two of the associated grain boundaries (see Figure 1).

Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
James C. M. Li ◽  
C. R. Feng ◽  
Bhakta B. Rath

The Frank-Read model, as a way of generating dislocations in metals and alloys, is widely accepted. In the early 1960s, Li proposed an alternate mechanism. Namely, grain boundary sources for dislocations, with the aim of providing a different model for the Hall-Petch relation without the need of dislocation pile-ups at grain boundaries, or Frank-Read sources inside the grain. This article provides a review of his model, and supporting evidence for grain boundaries or interfacial sources of dislocations, including direct observations using transmission electron microscopy. The Li model has acquired new interest with the recent development of nanomaterial and multilayers. It is now known that nanocrystalline metals/alloys show a behavior different from conventional polycrystalline materials. The role of grain boundary sources in nanomaterials is reviewed briefly.


Author(s):  
R. W. Fonda ◽  
D. E. Luzzi

The properties of polycrystalline materials are strongly dependant upon the strength of internal boundaries. Segregation of solute to the grain boundaries can adversely affect this strength. In copper alloys, segregation of either bismuth or antimony to the grain boundary will embrittle the alloy by facilitating intergranular fracture. Very small quantities of bismuth in copper have long been known to cause severe grain boundary embrittlement of the alloy. The effect of antimony is much less pronounced and is observed primarily at lower temperatures. Even though moderate amounts of antimony are fully soluble in copper, concentrations down to 0.14% can cause grain boundary embrittlement.


2001 ◽  
Vol 7 (S2) ◽  
pp. 400-401
Author(s):  
Y. Lei ◽  
Y. Ito ◽  
N. D. Browning

Yttria-stabilized zirconia (YSZ) has been the subject of many experimental and theoretical studies, due to the commercial applications of zirconia-based ceramics in solid state oxide fuel cells. Since the grain boundaries usually dominate the overall macroscopic performance of the bulk material, it is essential to develop a fundamental understanding of their structure-property relationships. Previous research has been performed on the atomic structure of grain boundaries in YSZ, but no precise atomic scale compositional and chemistry characterization has been carried out. Here we report a detailed analytical study of an [001] symmetric 24° bicrystal tilt grain boundary in YSZ prepared with ∼10 mol % Y2O3 by Shinkosha Co., Ltd by the combination of Z-contrast imaging and electron energy loss spectroscopy (EELS).The experimental analysis of the YSZ sample was carried out on a 200kV Schottky field emission JEOL 201 OF STEM/TEM4.


Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1362
Author(s):  
Cláudio M. Lousada ◽  
Pavel A. Korzhavyi

The segregation of P and S to grain boundaries (GBs) in fcc Cu has implications in diverse physical-chemical properties of the material and this can be of particular high relevance when the material is employed in high performance applications. Here, we studied the segregation of P and S to the symmetric tilt Σ9 (22¯1¯) [110], 38.9° GB of fcc Cu. This GB is characterized by a variety of segregation sites within and near the GB plane, with considerable differences in both atomic site volume and coordination number and geometry. We found that the segregation energies of P and S vary considerably both with distance from the GB plane and sites within the GB plane. The segregation energy is significantly large at the GB plane but drops to almost zero at a distance of only ≈3.5 Å from this. Additionally, for each impurity there are considerable variations in energy (up to 0.6 eV) between segregation sites in the GB plane. These variations have origins both in differences in coordination number and atomic site volume with the effect of coordination number dominating. For sites with the same coordination number, up to a certain atomic site volume, a larger atomic site volume leads to a stronger segregation. After that limit in volume has been reached, a larger volume leads to weaker segregation. The fact that the segregation energy varies with such magnitude within the Σ9 GB plane may have implications in the accumulation of these impurities at these GBs in the material. Because of this, atomic-scale variations of concentration of P and S are expected to occur at the Σ9 GB center and in other GBs with similar features.


Author(s):  
Guoxiong Zheng ◽  
Yifan Luo ◽  
Hideo Miura

Various brittle fractures have been found to occur at grain boundaries in polycrystalline materials. In thin film interconnections used for semiconductor devices, open failures caused by electro- and strain-induced migrations have been found to be dominated by porous random grain boundaries that consist of a lot of defects. Therefore, it is very important to explicate the dominant factors of the strength of a grain boundary in polycrystalline materials for assuring the safe and reliable operation of various products. In this study, both electron back-scatter diffraction (EBSD) analysis and a micro tensile test in a scanning electron microscope was applied to copper thin film which is used for interconnection of semiconductor devices in order to clarify the relationship between the strength and the crystallinity of a grain and a grain boundary quantitatively. Image quality (IQ) value obtained from the EBSD analysis, which indicates the average sharpness of the diffraction pattern (Kikuchi pattern) was applied to the crystallinity analysis. This IQ value indicates the total density of defects such as vacancies, dislocations, impurities, and local strain, in other words, the order of atom arrangement in the observed area in nano-scale. In the micro tensile test system, stress-strain curves of a single crystal specimen and a bicrystal specimen was measured quantitatively. Both transgranular and intergranular fracture modes were observed in the tested specimens with different IQ values. Based to the results of these experiments, it was found that there is the critical IQ value at which the fracture mode of the bicrystal specimen changes from brittle intergranular fracture at a grain boundary to ductile transgranular fracture in a grain. The strength of a grain boundary increases monotonically with IQ value because of the increase in the total number of rigid atomic bonding. On the other hand, the strength of a grain decreases monotonically with the increase of IQ value because the increase in the order of atom arrangement accelerates the movement of dislocations. Finally, it was clarified that the strength of a grain boundary and a grain changes drastically as a strong function of their crystallinity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Klimenkov ◽  
P. Vladimirov ◽  
U. Jäntsch ◽  
V. Kuksenko ◽  
R. Rolli ◽  
...  

Abstract The microstructural response of beryllium after neutron irradiation at various temperatures (643–923 K) was systematically studied using analytical transmission electron microscope that together with outcomes from advanced atomistic modelling provides new insights in the mechanisms of microstructural changes in this material. The most prominent feature of microstructural modification is the formation of gas bubbles, which is revealed at all studied irradiation temperatures. Except for the lowest irradiation temperature, gas bubbles have the shape of thin hexagonal prisms with average height and diameter increasing with temperature. A high number density of small bubbles is observed within grains, while significantly larger bubbles are formed along high-angle grain boundaries (GB). Denuded zones (DZ) nearly free from bubbles are found along both high- and low-angle grain boundaries. Precipitations of secondary phases (mainly intermetallic Al-Fe-Be) were observed inside grains, along dislocation lines and at GBs. EDX analysis has revealed homogeneous segregation of chromium and iron along GBs. The observed features are discussed with respect to the available atomistic modelling results. In particular, we present a plausible reasoning for the abundant formation of gas bubbles on intermetallic precipitates, observation of various thickness of zones denuded in gas bubbles and precipitates, and their relation to the atomic scale diffusion mechanisms of solute-vacancy clusters.


2000 ◽  
Vol 6 (S2) ◽  
pp. 940-941
Author(s):  
A.J. Schwartz ◽  
M. Kumar ◽  
P.J. Bedrossian ◽  
W.E. King

Grain boundary network engineering is an emerging field that encompasses the concept that modifications to conventional thermomechanical processing can result in improved properties through the disruption of the random grain boundary network. Various researchers have reported a correlation between the grain boundary character distribution (defined as the fractions of “special” and “random” grain boundaries) and dramatic improvements in properties such as corrosion and stress corrosion cracking, creep, etc. While much early work in the field emphasized property improvements, the opportunity now exists to elucidate the underlying materials science of grain boundary network engineering. Recent investigations at LLNL have coupled automated electron backscatter diffraction (EBSD) with transmission electron microscopy (TEM)5 and atomic force microscopy (AFM) to elucidate these fundamental mechanisms.An example of the coupling of TEM and EBSD is given in Figures 1-3. The EBSD image in Figure 1 reveals “segmentation” of boundaries from special to random and random to special and low angle grain boundaries in some grains, but not others, resulting from the 15% compression of an Inconel 600 polycrystal.


2012 ◽  
Vol 715-716 ◽  
pp. 179-179
Author(s):  
David L. Olmsted ◽  
Elizabeth A. Holm ◽  
Stephen M. Foiles

Grain boundary properties depend on both composition and structure. To test the relative contributions of composition and structure to the grain boundary energy, we calculated the energy of 388 grain boundaries in four elemental, fcc metals: Ni, Al, Au and Cu. We constructed atomic-scale bicrystals of each boundary and subjected them to a rigorous energy minimization process to determine the lowest energy structure. Typically, several thousand boundary configurations were examined for each boundary in each element.


1999 ◽  
Vol 581 ◽  
Author(s):  
Matthias Abraham ◽  
Mattias Thuvandert ◽  
Helen M. Lane ◽  
Alfred Cerezo ◽  
George D.W. Smith

ABSTRACTNanocrystalline Ni-P alloys produced by electrodeposition have been characterised by three-dimensional atom probe (3DAP) analysis. In the as-deposited materials, there are indications of some variation in P concentration between grains and segregation to grain boundaries. After heat treatment however, strong grain boundary segregation and the formation of Ni3P precipitates have been observed.


1990 ◽  
Vol 5 (5) ◽  
pp. 919-928 ◽  
Author(s):  
S. E. Babcock ◽  
D. C. Larbalestier

Regular networks of localized grain boundary dislocations (GBDs) have been imaged by means of transmission electron microscopy in three different types of high-angle grain boundaries in YBa2Cu3O7-δ, implying that these boundaries possess ordered structures upon which a significant periodic strain field is superimposed. The occurrence of these GBD networks is shown to be consistent with the GBD/Structural Unit and Coincidence Site Lattice (CSL)/Near CSL descriptions for grain boundary structure. Thus, these dislocations appear to be intrinsic features of the boundary structure. The spacing of the observed GBDs ranged from ∼10 nm to ∼100 nm. These GBDs make the grain boundaries heterogeneous on a scale that approaches the coherence length and may contribute to their weak-link character by producing the “superconducting micro-bridge” microstructure which has been suggested on the basis of detailed electromagnetic measurements on similar samples.


Sign in / Sign up

Export Citation Format

Share Document