Coprecipitation of barium sulfate and barium carbonate at 80°C

Author(s):  
K. Takiyama

The coprecipitation of two sparingly soluble compounds in the aqueous solution has been studied by means of electron microscopy and x-ray diffraction techniques, and the properties of the particles produced by the coprecipitation were discussed as an issue in crystal chemistry. In the present investigation the coprecipitation of barium sulfate and barium carbonate was studied. Both crystals belong to the orthorhombic system. The lattice constants of barium sulfate are ao=8.878, bo=5.450 and co=7.152 Å. Those of barium carbonate are ao=5.314, bo=8.902 and co=6.430 Å. The ratio of the lattice constants of barium sulfate is different from that of barium carbonate. In this investigation, the relation of the morphological properties of the particles with the crystallographic properties of the component compounds was discussed. As the particles became very small when the precipitation was carried out at room temperature, in the present investigation the coprecipitation was done at 80°C to produce larger particles to study the morphological properties of the particles.

2011 ◽  
Vol 287-290 ◽  
pp. 529-534 ◽  
Author(s):  
Feng Liu ◽  
Rong Yi Lin ◽  
Zhi Wang ◽  
Jie Liang

Barium carbonate (BaCO3) crystals with different morphologies were synthesized using BaCl2·2H2O by a carbonation method in water/ionic liquids (ILs) mixed solvents. The as-prepared products were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and the results indicated that the types of ILs and the mole ratio of water to ILs played important roles in determining the morphologies of the products. The analysis of the XRD pattern showed that ILs had an influence on the crystallinity of BaCO3. When the mole ratio of water to ILs increased, the size of BaCO3 crystals increased and the morphology gradually changed from spherical to oval and rod-like. A microemulsion model was employed to explain this mechanism.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8191-8201
Author(s):  
Fuqiang Hu ◽  
Yucheng Hu ◽  
Lingling Zhang ◽  
Meixue Gan ◽  
Shangjun Liu ◽  
...  

The aim of this paper was to enhance paper strength in NaOH/thiourea aqueous solution at room temperature. Paper from cotton pulp was saturated with room temperature NaOH/thiourea aqueous solution and placed at a fixed temperature (8, 15, and 20 °C) for a period of time (1 h, 2 h, 4 h, and 6 h). The morphology, X-ray diffraction (XRD), mechanical properties, and density of paper were characterized. The results indicated the paper was self-reinforced. Scanning electron microscopy (SEM) photographs indicated that the structure of the treated papers was increasingly compact with decreasing temperature. The XRD results showed that the crystallinity degree of the paper decreased from 80.0% to 60.0%. The stress at break of the treated papers increased by more than fivefold. The wet tensile strength of the treated papers increased remarkably.


Author(s):  
C. Wolpers ◽  
R. Blaschke

Scanning microscopy was used to study the surface of human gallstones and the surface of fractures. The specimens were obtained by operation, washed with water, dried at room temperature and shadowcasted with carbon and aluminum. Most of the specimens belong to patients from a series of X-ray follow-up study, examined during the last twenty years. So it was possible to evaluate approximately the age of these gallstones and to get information on the intensity of growing and solving.Cholesterol, a group of bile pigment substances and different salts of calcium, are the main components of human gallstones. By X-ray diffraction technique, infra-red spectroscopy and by chemical analysis it was demonstrated that all three components can be found in any gallstone. In the presence of water cholesterol crystallizes in pane-like plates of the triclinic crystal system.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 37
Author(s):  
Yan Liu ◽  
Taoling Dong ◽  
Kun Zhang ◽  
Fuwei Yang ◽  
Liqin Wang

Targeting cleaning of the artificial gypsum layer on white marble was studied. It was conducted by means of the specific depletion of the calcium and sulfate ions by the barium carbonate scavenger, which led to the continuous dissolution and clearance of gypsum layer. The cleaning effect was evaluated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), capillary suction, and color difference measurement. By this method, only the gypsum layer was cleared away and the carbonate substrate of marble was left intact at the same time. This method will be highly useful for the conservation of marble relics from surface weathering.


2002 ◽  
Vol 16 (06n07) ◽  
pp. 1047-1051
Author(s):  
JIANPING MA ◽  
ZHIMING CHEN ◽  
GANG LU ◽  
MINGBIN YU ◽  
LIANMAO HANG ◽  
...  

Intense photoluminescence (PL) has been observed at room temperature from the polycrystalline SiC samples prepared from carbon-saturated Si melt at a temperature ranging from 1500 to 1650°C. Composition and structure of the samples have been confirmed by means of X-ray photoelectron spectroscopy, X-ray diffraction and scanning electron microscopy. PL measurements with 325 nm UV light excitation revealed that the room temperature PL spectrum of the samples consists of 3 luminescent bands, the peak energies of which are 2.38 eV, 2.77 eV and 3.06 eV, respectively. The 2.38 eV band is much stronger than the others. It is suggested that some extrinsic PL mechanisms associated with defect or interface states would be responsible to the intensive PL observed at room temperature.


2010 ◽  
Vol 97-101 ◽  
pp. 4213-4216
Author(s):  
Jian Xiong Liu ◽  
Zheng Yu Wu ◽  
Guo Wen Meng ◽  
Zhao Lin Zhan

Novel single-crystalline SnO2 zigzag nanoribbons have been successfully synthesized by chemical vapour deposition. Sn powder in a ceramic boat covered with Si plates was heated at 1100°C in a flowing argon atmosphere to get deposits on a Si wafers. The main part of deposits is SnO2 zigzag nanoribbons. They were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and selected-area electron diffraction (SAED). SEM observations reveal that the SnO2 zigzag nanoribbons are almost uniform, with lengths near to several hundred micrometers and have a good periodically tuned microstructure as the same zigzag angle and growth directions. Possible growth mechanism of these zigzag nanoribbons was discussed. A room temperature PL spectrum of the zigzag nanoribbons shows three peaks at 373nm, 421nm and 477nm.The novel zigzag microstructures will provide a new candidate for potential application.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2019 ◽  
Vol 33 (03) ◽  
pp. 1950027 ◽  
Author(s):  
Jiaxiang Chen ◽  
Xiaopeng Jia ◽  
Yuewen Zhang ◽  
Haiqiang Liu ◽  
Baomin Liu ◽  
...  

The polycrystalline skutterudite [Formula: see text] were successfully synthesized from 1.5 GPa to 3.5 GPa by the high pressure and high temperature (HPHT) method. Negative Seebeck coefficient confirmed the n-type conductivity of all samples. The phase compositions of samples were investigated by X-ray diffraction (XRD) and the microstructures were observed by scanning electron microscopy (SEM). It was found that the grains appeared smaller and the grain boundaries became more abundant when pressures were higher. We measured the electrical properties from room temperature to 723 K. Both the electrical resistivity and absolute value of Seebeck coefficient increase with the increasing synthetic pressure. At 723 K, the maximum power factor of [Formula: see text] was obtained for the sample synthesized under 3 GPa. The maximum ZT value of 0.61 was reached by [Formula: see text] synthesized under 3 GPa and measured at 723 K.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1238
Author(s):  
Murendeni P. Ravele ◽  
Opeyemi A. Oyewo ◽  
Sam Ramaila ◽  
Lydia Mavuru ◽  
Damian C. Onwudiwe

In this paper, spherical-shaped pure phase djurleite (Cu31S16) and roxbyite (Cu7S4) nanoparticles were prepared by a solvothermal decomposition of copper(II) dithiocarbamate complex in dodecanthiol (DDT). The reaction temperature was used to control the phases of the samples, which were represented as Cu31S16 (120 °C), Cu31S16 (150 °C), Cu7S4 (220 °C), and Cu7S4 (250 °C) and were characterized by using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and absorption spectroscopy. The samples were used as photocatalysts for the degradation of tetracycline (TC) under visible light irradiation. The results of the study showed that Cu7S4 (250 °C) exhibited the best activity in the reaction system with the TC degradation rate of up to 99% within 120 min of light exposure, while the Cu31S16 (120 °C) system was only 46.5% at the same reaction condition. In general, roxbyite Cu7S4 (250 °C) could be considered as a potential catalyst for the degradation of TC in solution.


1989 ◽  
Vol 169 ◽  
Author(s):  
Rollin E. Lakis ◽  
Sidney R. Butler

AbstractY1Ba2Cu3O7 has been prepared by the evaporative decomposition of solutions method. Nitrate and mixed anion solutions were atomized and decomposed at temperatures ranging from 300°C to 950°C. The resulting materials have been characterized using x-ray powder diffraction, Thermal Gravimetric Analysis (TGA), particle size analysis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). The powder consists of 0.3 micron agglomerated hollow spheres with a primary particle size of 0.06 micron. TGA and x-ray diffraction indicate the presence of barium nitrate and barium carbonate due to incomplete decomposition and/or product contamination by the process environment.


Sign in / Sign up

Export Citation Format

Share Document