Eponate 12, a new epoxy resin: Comparisons with EPON 812 and observations on its use for general biological electron microscopy

Author(s):  
J.A. Mascorro ◽  
G.S. Kirby

Many epoxy resins have been introduced during the last several years as replacements for Epon 812 since the Shell Chemical Company discontinued production of this popular embedding resin. In a past study, the present investigators examined several of the “replacement” resins for physical characteristics such as viscosity, flow rate, density, mass weight, and hardness of the polymerized medium. In addition, other equally important parameters including sectioning and infiltrating character as well as stain-ability and section strength subsequent to beam and vacuum conditions also were evaluated. The present work follows a similar rationale and seeks to determine this same information for Eponate 12, an epoxy resin designated as a true generic replacement for the formerly available Epon 812 product.For purposes of physical comparisons, Eponate 12 was tested against a sample of original Shell Epon 812 still maintained in our laboratory.

Author(s):  
J. G. Adams ◽  
M. M. Campbell ◽  
H. Thomas ◽  
J. J. Ghldonl

Since the introduction of epoxy resins as embedding material for electron microscopy, the list of new formulations and variations of widely accepted mixtures has grown rapidly. Described here is a resin system utilizing Maraglas 655, Dow D.E.R. 732, DDSA, and BDMA, which is a variation of the mixtures of Lockwood and Erlandson. In the development of the mixture, the Maraglas and the Dow resins were tested in 3 different volumetric proportions, 6:4, 7:3, and 8:2. Cutting qualities and characteristics of stability in the electron beam and image contrast were evaluated for these epoxy mixtures with anhydride (DDSA) to epoxy ratios of 0.4, 0.55, and 0.7. Each mixture was polymerized overnight at 60°C with 2% and 3% BDMA.Although the differences among the test resins were slight in terms of cutting ease, general tissue preservation, and stability in the beam, the 7:3 Maraglas to D.E.R. 732 ratio at an anhydride to epoxy ratio of 0.55 polymerized with 3% BDMA proved to be most consistent. The resulting plastic is relatively hard and somewhat brittle which necessitates trimming and facing the block slowly and cautiously to avoid chipping. Sections up to about 2 microns in thickness can be cut and stained with any of several light microscope stains and excellent quality light photomicrographs can be taken of such sections (Fig. 1).


2021 ◽  
Vol 410 ◽  
pp. 686-691
Author(s):  
Evgeniy S. Bochkarev ◽  
Dmitriy S. Vostrikov ◽  
Oleg O. Tuzhikov

The paper represents ozone resistance of rubbers based on carboxylated nitrile butadiene rubber cured with epoxy resins and magnesium oxide. Ozone resistance was investigated using the express-method at a flow rate of the ozone-air mixture of 9 l/h and ozone content of 9 mg/l. In the method used, the “time to cracking start” indicator was taken as the basic indicator of ozone resistance. The second indicator characterizing the ozone resistance of elastomeric materials was the "rate of destruction" in the main period of destruction. There has been evaluated the effect of dissolved polyvinyl chloride in epoxy resin ED-20 on the properties of vulcanizates. There has been investigated the Increase in destruction time under the action of ozone.


Author(s):  
V. B. Gupta ◽  
L. T. Drzal ◽  
Y. L. Chen

The dependence of the fracture behavior of cured epoxy resin on its morphology is an area of interest and controversy. It is believed that the resin is heterogeneous, comprising spherical entities of high crosslink density in a matrix of relatively lower crosslink density. These heterogeneities have quite a wide size distribution, predominantly in the 10 to 50nm range and are believed to be aggregates of a few elementary entities of around 5nm in diameter. Since the fracture pattern has been observed to be around the boundary of the aggregate rather than through it, it is important to understand how these larger entities influence the fracture behavior. Hence the present study was designed to map the size distribution of aggregates which will henceforth be referred to as nodules. Although it has been pointed out that scanning electron microscopy is more suited for the study of polymer fractography than transmission electron microscopy, there has been a much greater use of TEM employing the replica method in morphological investigations of cured epoxy resins. It will be shown here that if suitable specimens are used, the morphology of cured epoxy resins can be studied with SEM.


Author(s):  
J.A. Mascorro ◽  
G.S. Kirby

Epon 812 has been used successfully as an embedding medium because of its well known sectioning and staining characteristics as well as its ability to tolerate the unfriendly confines of an electron microscope column which include intense heat and strong vacuum. Although production of this popular medium was discontinued by the Shell Chemical Co. in the mid-1970's, the product still is available from several suppliers. However, existing inventories now are nearly 10 years old and microscopists eventually must rely on similar substitutes if Epon was their original choice. This work has examined the replacements EmBed 812, LX-112, Pelco Medcast and PolyBed 812 for physical characteristics such as flow rate, density, viscosity and hardness. In addition, an original supply of Shell Epon 812 was tested and compared to the Epon facsimilies. This work also seeks to establish ideal infiltration and polymerization schedules in order to minimize processing time and insure that tissues are well impregnated subsequent to microtomy and microscopy.


1958 ◽  
Vol 4 (2) ◽  
pp. 191-194 ◽  
Author(s):  
Audrey M. Glauert ◽  
R. H. Glauert

Epoxy resins are suitable media for embedding for electron microscopy, as they set uniformly with virtually no shrinkage. A mixture of araldite epoxy resins has been developed which is soluble in ethanol, and which yields a block of the required hardness for thin sectioning. The critical modifications to the conventional mixtures are the choice of a plasticized resin in conjunction with an aliphatic anhydride as the hardener. The hardness of the final block can be varied by incorporating additional plasticizer, and the rate of setting can be controlled by the use of an amine accelerator. The properties of the araldite mixture can be varied quite widely by adjusting the proportions of the various constituents. The procedure for embedding biological specimens is similar to that employed with methacrylates, although longer soaking times are recommended to ensure the complete penetration of the more viscous epoxy resin. An improvement in the preservation of the fine structure of a variety of specimens has already been reported, and a typical electron microgram illustrates the present paper.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Gonadotroph cell adenomas of the pituitary are infrequent in human patients and are not invariably associated with altered gonadal function. To date, no animal model of this tumor type exists. Herein, we describe spontaneous gonadotroph cell adenomas in old male and female Sprague-Dawley rats by histology, immunocytology and electron microscopy.The material consisted of the pituitaries of 27 male and 38 female Sprague Dawley rats, all 26 months of age or older, removed at routine autopsy. Sections of formal in-fixed, paraffin-embedded tissue were stained with hematoxylin-phloxine-saffron (HPS), the PAS method and the Gordon-Sweet technique for the demonstration of reticulin fibers. For immunostaining, sections were exposed to anti-rat β-LH, anti-ratβ-TSH, anti-rat PRL, anti-rat GH and anti-rat ACTH 1-39. For electron microscopy, tissue was fixed in 2.5% glutaraldehyde, postfixed in 1% OsO4 and embedded in epoxy-resin. Tissue fixed in 10% formalin, embedded in epoxy resin without osmification, was used for immunoelectron microscopy.


Author(s):  
Hilton H. Mollenhauer

Many factors (e.g., resolution of microscope, type of tissue, and preparation of sample) affect electron microscopical images and alter the amount of information that can be retrieved from a specimen. Of interest in this report are those factors associated with the evaluation of epoxy embedded tissues. In this context, informational retrieval is dependant, in part, on the ability to “see” sample detail (e.g., contrast) and, in part, on tue quality of sample preservation. Two aspects of this problem will be discussed: 1) epoxy resins and their effect on image contrast, information retrieval, and sample preservation; and 2) the interaction between some stains commonly used for enhancing contrast and information retrieval.


Author(s):  
Joe A. Mascorro ◽  
Gerald S. Kirby

Embedding media based upon an epoxy resin of choice and the acid anhydrides dodecenyl succinic anhydride (DDSA), nadic methyl anhydride (NMA), and catalyzed by the tertiary amine 2,4,6-Tri(dimethylaminomethyl) phenol (DMP-30) are widely used in biological electron microscopy. These media possess a viscosity character that can impair tissue infiltration, particularly if original Epon 812 is utilized as the base resin. Other resins that are considerably less viscous than Epon 812 now are available as replacements. Likewise, nonenyl succinic anhydride (NSA) and dimethylaminoethanol (DMAE) are more fluid than their counterparts DDSA and DMP- 30 commonly used in earlier formulations. This work utilizes novel epoxy and anhydride combinations in order to produce embedding media with desirable flow rate and viscosity parameters that, in turn, would allow the medium to optimally infiltrate tissues. Specifically, embeding media based on EmBed 812 or LX 112 with NSA (in place of DDSA) and DMAE (replacing DMP-30), with NMA remaining constant, are formulated and offered as alternatives for routine biological work.Individual epoxy resins (Table I) or complete embedding media (Tables II-III) were tested for flow rate and viscosity. The novel media were further examined for their ability to infilftrate tissues, polymerize, sectioning and staining character, as well as strength and stability to the electron beam and column vacuum. For physical comparisons, a volume (9 ml) of either resin or media was aspirated into a capillary viscocimeter oriented vertically. The material was then allowed to flow out freely under the influence of gravity and the flow time necessary for the volume to exit was recored (Col B,C; Tables). In addition, the volume flow rate (ml flowing/second; Col D, Tables) was measured. Viscosity (n) could then be determined by using the Hagen-Poiseville relation for laminar flow, n = c.p/Q, where c = a geometric constant from an instrument calibration with water, p = mass density, and Q = volume flow rate. Mass weight and density of the materials were determined as well (Col F,G; Tables). Infiltration schedules utilized were short (1/2 hr 1:1, 3 hrs full resin), intermediate (1/2 hr 1:1, 6 hrs full resin) , or long (1/2 hr 1:1, 6 hrs full resin) in total time. Polymerization schedules ranging from 15 hrs (overnight) through 24, 36, or 48 hrs were tested. Sections demonstrating gold interference colors were collected on unsupported 200- 300 mesh grids and stained sequentially with uranyl acetate and lead citrate.


Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


Sign in / Sign up

Export Citation Format

Share Document