Formation of defects in boron-implanted PEPBLT structures

Author(s):  
N. David Theodore ◽  
Sam Sundaram ◽  
Peter Fejes

Variations on LOCOS (local-oxidation of silicon) are being explored for device-isolation, to implement further miniaturization of VLSI devices. One such variation involves poly-encapsulated poly-buffered LOCOS + trench-isolation (PEPBLT). The method provides a means to support device scaling and to create self-aligned shallow field-oxide elements with minimal encroachment into active regions. In an earlier study, dislocations were observed to be associated with a combination of high-dose ∼1E15 cm−2 phosphorus implants and PEPBLT isolation. The present study investigates the effect of boron implants on similar PEPBLT structures. The effect of fabrication-related stresses in the structures is of interest because extended-defects, if formed, could electrically degrade transistors.PEPBLT structures were exposed to varied processing conditions to build high-performance bipolar transistors. Isolated active-device regions from the above structures were characterized using TEM. Some of the active regions were (i) implanted with 80 keV-8.5E15 cm−2 boron with no anneal, (ii) implanted with 80 keV- 8.5E15 cm−2 boron and annealed at 900°C/90’/N2 plus 1050°C/30” RTA during the course of processing, (iii) not implanted.

Author(s):  
N. David Theodore ◽  
Barbara Vasquez ◽  
Peter Fejes

As device dimensions decrease and circuit densities increase, conventional LOCOS (Local-Oxidation of Silicon) isolation presents a limitation due to lateral encroachment of the isolation-oxide. Variations in LOCOS, including poly-buffered LOCOS have been of interest as means to limit lateral encroachment of the field-oxide into the active device-region. Deep-trench isolation provides a means to support device scaling and in this work is integrated with poly-buffered LOCOS to create self-aligned shallow fieldoxide elements with minimal encroachment into active regions. Use of these technologies however requires an understanding of the behavior of the materials and structures being used and their interactions under different processing conditions. The effect of fabrication-related stresses in the structures is of interest because extended-defects, if formed, could electrically degrade devices.


Author(s):  
Peter Fejes ◽  
N. David Theodore ◽  
Han-Bin Liang

Poly-buffered LOCOS + trench-isolation is a technique being explored for device-isolation on semiconductor substrates. The method creates self-aligned shallow field-oxide elements with minimal encroachment into active regions. In an earlier study/dislocations were observed in PBLT structures, associated with a combination of high-dose [∼1E15 cm−2] phosphorus implants and PBLT isolation. The present study investigates the effect of implant- and isolation-geometries on the formation of extended-defects in PBLT structures. The effect of fabrication-related stresses in the structures is of interest because extended-defects, once formed, can electrically degrade devices.PBLT structures were fabricated using varied implant- and isolation- geometries. Selected regions of the structures were exposed to 1E15 cm−2 phosphorus implants. Transmission electron microscopy was then used to characterize these regions. Some of the structures investigated were (i) trench with no adjacent implant, (ii) trench with an adjacent trench, but no implant, (iii) trench with a 1E15 cm−2 phosphorus implant placed ∼4 μm from the trench, (iv) trench with a 1E15 cm−2 phosphorus implant placed ∼2 μm from the trench, (v) doubly-kinked trench with a 1E15cm−2 phosphorus implant placed between the kinks.


1992 ◽  
Vol 262 ◽  
Author(s):  
Barbara Vasquez ◽  
N. David Theodore

ABSTRACTPoly-buffered local-oxidation of silicon + trench-isolation (PBLT) is a technique being explored for device isolation. In an earlier study, we had reported the presence of dislocations associated with a combination of high-dose (∼5E14 cm2) phosphorous implants and PBLT isolation. In the present study, the behavior of extended defects present in the structures is analyzed in greater detail. The origin and behavior of the defects is modelled to explore potential mechanisms to explain the observations. Implantation induced dislocation-loops interact with stress fields associated with PBLT isolation-trenches. Some of the implant loops (in the presence of a stress field) transform to dislocation sources which then create glide dislocations in the structures. Strategies for defect engineering are discussed, including reducing implant-induced damage (lowering the implant dose) or reducing stress fields (by moving the edge of the implanted region away from the trench). Defect densities can be reduced or eliminated.


2011 ◽  
Vol 55 (12) ◽  
pp. 5480-5484 ◽  
Author(s):  
Yuhan Chang ◽  
Wen-Chien Chen ◽  
Pang-Hsin Hsieh ◽  
Dave W. Chen ◽  
Mel S. Lee ◽  
...  

ABSTRACTThe objective of this study was to evaluate the antibacterial effects of polymethylmethacrylate (PMMA) bone cements loaded with daptomycin, vancomycin, and teicoplanin against methicillin-susceptibleStaphylococcus aureus(MSSA), methicillin-resistantStaphylococcus aureus(MRSA), and vancomycin-intermediateStaphylococcus aureus(VISA) strains. Standardized cement specimens made from 40 g PMMA loaded with 1 g (low-dose), 4 g (middle-dose) or 8 g (high-dose) antibiotics were tested for elution characteristics and antibacterial activities. The patterns of release of antibiotics from the cement specimens were evaluated usingin vitrobroth elution assay with high-performance liquid chromatography. The activities of broth elution fluid against differentStaphylococcus aureusstrains (MSSA, MRSA, and VISA) were then determined. The antibacterial activities of all the tested antibiotics were maintained after being mixed with PMMA. The cements loaded with higher dosages of antibiotics showed longer elution periods. Regardless of the antibiotic loading dose, the teicoplanin-loaded cements showed better elution efficacy and provided longer inhibitory periods against MSSA, MRSA, and VISA than cements loaded with the same dose of vancomycin or daptomycin. Regarding the choice of antibiotics for cement loading in the treatment ofStaphylococcus aureusinfection, teicoplanin was superior in terms of antibacterial effects.


1987 ◽  
Vol 8 (4) ◽  
pp. 174-175 ◽  
Author(s):  
D.D. Tang ◽  
Tze-Chiang Chen ◽  
Ching-Te Chuang ◽  
G.P. Li ◽  
J.M.C. Stork ◽  
...  

2015 ◽  
Vol 24 (2) ◽  
pp. 97-102 ◽  
Author(s):  
Rita Lahirin ◽  
Inge Permadhi ◽  
Ninik Mudjihatini ◽  
Rahmawaty Ridwan ◽  
Ray Sugianto

Background: Green tea contains catechins that have inhibitory effects on amylase, sucrase, and sodium-dependent glucose transporter (SGLT) which result in lowering of postprandial blood glucose (PBG). This beneficial effect has been widely demonstrated using the usual dose (UD) of green tea preparation. Our study was aimed to explore futher lowering of PBG using high dose (HD) of green tea in healthy adolescents. Methods: 24 subjects received 100 mL infusion of either 0.67 or 3.33 grams of green tea with test meal. Fasting, PBG at 30, 60, 120 minutes were measured. Subjects were cross-overed after wash out. PBG and its incremental area under the curve (IAUC) difference between groups were analyzed with paired T-test. Cathecin contents of tea were measured using high-performance liquid chromatography (HPLC). Results: The PBG of HD group was lower compared to UD (at 60 minutes =113.70 ± 13.20 vs 124.16 ± 8.17 mg/dL, p = 0.005; at 120 minutes = 88.95 ± 6.13 vs 105.25 ± 13.85 mg/dL, p < 0.001). The IAUC of HD was also found to be lower compared to UD (2055.0 vs 3411.9 min.mg/dL, p < 0.001). Conclusion: Additional benefit of lowering PBG can be achieved by using higher dose of green tea. This study recommends preparing higher dose of green tea drinks for better control of PBG.


2012 ◽  
Vol 554-556 ◽  
pp. 1962-1966 ◽  
Author(s):  
Xiao Wen Miao ◽  
Zhi Dong Chang ◽  
Wen Jun Li ◽  
Rong Rong Zhao ◽  
Bin Dong ◽  
...  

A high performance liquid chromatographic method has been developed for separation and quantitation of sucrose esters using charged aerosol detection (CAD) combined with mobile phase compensation. Two Acclaim120 C18 columns (75×3.0mm, 3μm) and the gradient composition (0 min – 72% A + 25% B + 3%C, 7.5 min – 75% A + 25% B + 3%C, 19.5 min – 97% A + 3%C, 30 min – 97% A + 3%C, where A is methanol, B is water and C is tetrahydrofuran) were applied. A precisely inverse gradient composition (0 min – 97% A + 3%C, 7.5 min – 97% A + 3%C, 19.5 min – 72% A + 25% B + 3%C, 30 min – 72% A + 25% B + 3%C) was also used. The mobile phase compensation was performed by mixing of the column effluent with the mobile phase of exactly reverse composition provided by a second pump before introduction into the CAD. Introduction


1987 ◽  
Vol 92 ◽  
Author(s):  
Jim D. Whitfield ◽  
Marie E. Burnham ◽  
Charles J. Varker ◽  
Syd.R. Wilson

The advantages of Silicon-on-Insulator (SO) devices over bulk Silicon devices are well known (speed, radiation hardened, packing density, latch up free CMOS,). In recent years, much effort has been made to form a thin, buried insulating layer just below the active device region. Several approaches are being developed to fabricate such a buried insulating layer. One viable approach is by high dose, high energy oxygen implantation directly into the silicon wafer surface (1-3). With proper implant and annealing conditions, a thin stoichiometric buried oxide with a good crystalline quality silicon overlayer can be formed on which an epitaxial layer can be grown and functional devices and circuits built. As SO1 circuits become market viable, mass production tools and techniques are being developed and evaluated. Of particular interest here is the evaluation of high current oxygen implantation with rapid thermal processing on the electrical characteristics of the oxide-silicon interfaces, the silicon overlayer and the thermally grown oxide on the top surface using measurements on gated diodes and guarded capacitors.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1105 ◽  
Author(s):  
Bingyong Mao ◽  
Jiayu Gu ◽  
Dongyao Li ◽  
Shumao Cui ◽  
Jianxin Zhao ◽  
...  

Fructooligosaccharides (FOS) are a well-known class of prebiotic and are considered to selectively stimulate the growth of bifidobacteria in the gut. Previous studies focused on the growth stimulation of Bifidobacterium, but they did not further investigate the bifidobacterial composition and the specific species that were stimulated. In this study, mice were fed with FOS in different doses for four weeks and the composition of fecal microbiota, in particular Bifidobacterium, was analyzed by sequencing the V3–V4 region and the groEL gene on the MiSeq platform, respectively. In the high-dose group, the relative abundance of Actinobacteria was significantly increased, which was mainly contributed by Bifidobacterium. At the genus level, the relative abundances of Blautia and Coprococcus were also significantly increased. Through the groEL sequencing, 14 species of Bifidobacterium were identified, among which B. pseudolongum was most abundant. After FOS treatment, B. pseudolongum became almost the sole bifidobacterial species (>95%). B. pseudolongum strains were isolated and demonstrated their ability to metabolize FOS by high performance liquid chromatography (HPLC). Therefore, we inferred that FOS significantly stimulated the growth of B. pseudolongum in mice. Further investigations are needed to reveal the mechanism of selectiveness between FOS and B. pseudolongum, which would aid our understanding of the basic principles between dietary carbohydrates and host health.


Sign in / Sign up

Export Citation Format

Share Document