Sustainable Schools: Making Energy Efficiency a Lifestyle Priority

2004 ◽  
Vol 20 (2) ◽  
pp. 81-91 ◽  
Author(s):  
Ken Purnell ◽  
Mark Sinclair ◽  
Anna Gralton

AbstractPromoting efficient energy use in schools that consequently reduces greenhouse gas emissions is the purpose of a residential Energy Efficiency in Schools (EEIS) program reported on in this paper. Research on this program aligns with one of the “key overarching sustainability issues”, set out in the Learning for Sustainability: NSW Environmental Education Plan 2002-2005: “Sustaining energy use, cutting greenhouse gases”. The EEIS program was sponsored by Queensland EPA, Ergon Energy and Education Queensland. Participants learnt about innovation, leadership, coal mining, greenhouse issues, the “greenhouse challenge”, conducting energy audits, alternative energy and promoting energy efficient practices in school and the community.Three EEIS models in Queensland that supported change in energy usage behaviours of participants (school students, parents and staff) is examined. In each of the models, interviews were conducted and questionnaires were completed with participants. In Model 1 it was found that, overall; the EEIS program did develop positive energy efficient behaviours in those who participated. In relation to whole school effects, mixed results were obtained. In Model 1 a rural school initially reduced energy consumption by fifty percent and in Model 2 significant changes in energy efficient behaviours in the school communities occurred. In Model 3 one school followed through an action plan and similar positive effects were observed. The development of an action plan that is implemented in the school, the selection of suitable participants, and post-program visits to schools by relevant staff were among the factors that contributed to the overall success. Each model was found to have achieved their aims to varying degrees but had outcomes that are likely to have both lifetime and possibly intergenerational effects.

2015 ◽  
Vol 105 (5) ◽  
pp. 192-195 ◽  
Author(s):  
Karen Palmer ◽  
Margaret Walls

Inattention may be an important contributor to the energy efficiency gap and may be particularly acute in residential buildings where many different features will determine a home's energy use. Energy audits can provide information on how to reduce energy loss in a home, but the use of audits is rare. We use data from a national survey of 1700 homeowners to study the factors affecting a home owner's choice to have an audit. We create an index of energy inattention for our survey respondents. This index and two additional behavioral factors prove to be important determinants of the audit choice.


Author(s):  
Hugo Hens

Since the 1990s, the successive EU directives and related national or regional legislations require new construction and retrofits to be as much as possible energy-efficient. Several measures that should stepwise minimize the primary energy use for heating and cooling have become mandated as requirement. However, in reality, related predicted savings are not seen in practice. Two effects are responsible for that. The first one refers to dweller habits, which are more energy-conserving than the calculation tools presume. In fact, while in non-energy-efficient ones, habits on average result in up to a 50% lower end energy use for heating than predicted. That percentage drops to zero or it even turns negative in extremely energy-efficient residences. The second effect refers to problems with low-voltage distribution grids not designed to transport the peaks in electricity whensunny in summer. Through that, a part of converters has to be uncoupled now and then, which means less renewable electricity. This is illustrated by examples that in theory should be net-zero buildings due to the measures applied and the presence of enough photovoltaic cells (PV) on each roof. We can conclude that mandating extreme energy efficiency far beyond the present total optimum value for residential buildings looks questionable as a policy. However, despite that, governments and administrations still seem to require even more extreme measurements regarding energy efficiency.


2021 ◽  
pp. 1-22
Author(s):  
Eva McLaughlin ◽  
Jun-Ki Choi ◽  
Kelly J. Kissock

Abstract Industrial energy efficiency assessments not only provide benefits to manufacturers, but also generate significant economic and environmental benefits to localities, states, and the nation through indirect and induced benefits. Quantifying these benefits requires a systematic economic framework for capturing these interactions. This article employs methodologies for improving the energy efficiency of small and medium-size industry through their combustion systems. Combustion systems offer large opportunities to enhance energy efficiency through adopting advanced technologies and better-informed operations. The case studies presented illuminate the potential savings and impacts from implementing energy-efficient combustion recommendations and the importance of energy audits and energy efficiency in the fight against climate change. This study describes and quantifies the cascading economic and environmental impacts of implementing the industrial energy efficiency recommendations offered by an energy auditing program by participating facilities over a ten-year period. Results showed that it is expected that a total of $185M would be saved in energy costs and 2.3 million metric tons of carbon dioxide emissions would be avoided annually, and about 972 jobs could be created in the studied region if all the combustion recommendations would be implemented. The broader view afforded by the proposed study can be used to support better energy efficient practices in manufacturing facilities, communities, and states.


2002 ◽  
Vol 14 (6) ◽  
pp. 1323-1346 ◽  
Author(s):  
Susanne Schreiber ◽  
Christian K. Machens ◽  
Andreas. V. M. Herz ◽  
Simon B. Laughlin

We investigate the energy efficiency of signaling mechanisms that transfer information by means of discrete stochastic events, such as the opening or closing of an ion channel. Using a simple model for the generation of graded electrical signals by sodium and potassium channels, we find optimum numbers of channels that maximize energy efficiency. The optima depend on several factors: the relative magnitudes of the signaling cost (current flow through channels), the fixed cost of maintaining the system, the reliability of the input, additional sources of noise, and the relative costs of upstream and downstream mechanisms. We also analyze how the statistics of input signals influence energy efficiency. We find that energy-efficient signal ensembles favor a bimodal distribution of channel activations and contain only a very small fraction of large inputs when energy is scarce. We conclude that when energy use is a significant constraint, trade-offs between information transfer and energy can strongly influence the number of signaling molecules and synapses used by neurons and the manner in which these mechanisms represent information.


Author(s):  
Lesley Herrmann ◽  
Moncef Krarti

Recently, the city of Boulder, CO has recently approved mandatory energy efficiency standard, called SmartRegs Program, for rental properties. Improving residential energy efficiency is a goal of the city as they strive to meet the green house gas reduction targets of the Kyoto Protocol. However, energy efficiency is typically not implemented in rental units because of a split incentive between landlords and tenants. This paper evaluates the various retrofit measures that improve rental homes energy efficiency as well as the effectiveness of SmartRegs Program. First, various energy efficiency measures are evaluated through walk-through and detailed energy audits to assess their effectiveness in improving the energy performance of rental homes. Based on the results of the energy audits and survey of various stake holders, a set of recommendations have been defined to ensure that the SmartRegs program be successfully implemented in order to improve the overall performance and quality of rental homes. Moreover, it is found that energy efficient can increase the thermal comfort levels and decrease the energy costs for tenants, increase the value of the property for landlords, and help the city meet their green house gas reduction goals.


Author(s):  
Chao Jin ◽  
Bronis R de Supinski ◽  
David Abramson ◽  
Heidi Poxon ◽  
Luiz DeRose ◽  
...  

Energy consumption is one of the top challenges for achieving the next generation of supercomputing. Codesign of hardware and software is critical for improving energy efficiency (EE) for future large-scale systems. Many architectural power-saving techniques have been developed, and most hardware components are approaching physical limits. Accordingly, parallel computing software, including both applications and systems, should exploit power-saving hardware innovations and manage efficient energy use. In addition, new power-aware parallel computing methods are essential to decrease energy usage further. This article surveys software-based methods that aim to improve EE for parallel computing. It reviews the methods that exploit the characteristics of parallel scientific applications, including load imbalance and mixed precision of floating-point (FP) calculations, to improve EE. In addition, this article summarizes widely used methods to improve power usage at different granularities, such as the whole system and per application. In particular, it describes the most important techniques to measure and to achieve energy-efficient usage of various parallel computing facilities, including processors, memories, and networks. Overall, this article reviews the state-of-the-art of energy-efficient methods for parallel computing to motivate researchers to achieve optimal parallel computing under a power budget constraint.


2018 ◽  
Vol 40 (3) ◽  
pp. 46-56
Author(s):  
B.I. Basok ◽  
E.T. Baseyev

The communal heat power engineering of Ukraine and its main area - the heat supply of the settlements of Ukraine - is the main consumer of primary energy resources (more than 60% of the total energy balance of the country, mainly imported natural gas). At the same time, this sector has the greatest potential for energy saving if measures and mechanisms are used to increase the efficiency of energy use, first of all with energy supply in buildings (thermal losses here reach up to 40%). Low energy efficiency of heat supply is the main reason for high tariffs for the consumer of housing and communal services and the challenge of social tension. Increasing energy efficiency is a basic condition for national economic, environmental and social stability, a requirement for the safety of life and a guarantee of the entire national security of the country. An overview of technological, organizational and socio-economic innovations for increasing energy efficiency of buildings is presented. Innovative equipment and technologies for increasing the energy efficiency of buildings and innovative engineering systems for their energy supply have been carried out at ITTP NAS of Ukraine. The method of determination of energy efficiency indicators of buildings, enclosing structures of buildings and the practice of conducting energy audits with the use of such diagnostic center measures as demonstration building of the "zero energy" constructed on the territory of ITT of NAS of Ukraine with energy supply from renewable energy sources (heat of soil, insolation, wind). Such a demonstration facility serves as a scientific and methodological center for training students of heat energy specialties, as well as the training of specialists involved in the development of energy efficient energy supply technologies for buildings and their energy audit. On the problems of increasing energy efficiency of the building sector in the near future, the main objectives of scientific research, subjects of fundamental, applied research, subjects, methods and tools of such research were determined.


Author(s):  
Arnawan Hasibuan

This study aims to determine the right strategy for energy efficiency that can be applied in the campus area. This study uses quantitative methods in a dominant position, while qualitative methods are less dominant. The method of analysis for this study uses Contextual Interaction Theory (CIT) with the characteristics of the implementer and the target group consisting of motives, cognition, and strengths. These variables will be the main points for formulating a basic strategy on energy use at the Faculty of Engineering, Bukit Indah campus, Malikussaleh University. Contextual issues are also external factors that influence and become a consideration in determining the level of energy efficiency efforts on campus. Regarding to CIT measurements which have been analyzed, the score of motives from implementer is -0.33, cognitions +0.50, and power +62. Then, overall for target group get positive score which consist of motives +0.75, cognitions +0.54, and power +0.44. The result of type interaction between two actors point out number 10 which is about obstructive. Apart from that, three contextual issues will also be analyzed that affect the characteristics of actors, namely the specific context, the structural context and the broader context. Strategic planning to pursue energy efficiency at the Faculty of Engineering, Bukit Indah Campus, Malikussaleh University consists of increasing motivation with energy-saving campaigns and awarding prizes. Then, improve cognition with energy audits and socialization of energy efficiency. Finally, increasing strength through the implementation of sustainable policies and programs.


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 3919-3937
Author(s):  
Essam Elnagar ◽  
Simran Munde ◽  
Vincent Lemort

One pavilion was selected for deep retrofitting from the Otto Wagner area situated in the west of Vienna. The retrofitting process involves sustainable and energy-efficient construction to improve the energy performance and energy production potential of the building while preserving the cultural heritage and significance. This four-story pavilion was re-designed according to the proposed regulations of a net positive energy university building to become a student residence. Architectural, building envelope, and engineering interventions along with various changes were simulated through the Sefaira tool in the SketchUp model. These included: optimization of the U-values of the roof, walls, and floor; the addition of different layers of sustainable energy-efficient insulation materials to decrease the overall energy demand. The specific energy demands for heating, cooling, and lighting were decreased in the proposed model to reduce the total energy use intensity from 248.9 kWh/(m2 year) to 54.3 kWh/(m2 year) resulting in a 78.2% reduction. The main goal of this study is to try and achieve a net positive energy status building as part of the Otto Wagner area by improving the building envelope and integrating renewable energies. A total of 22.5% of the annual energy consumption was generated by the designed PV system. The selected building achieved the passive house standards in Austria by optimizing the energy performance with the proposed energy efficiency measures.


Author(s):  
N. Fumo ◽  
P. J. Mago ◽  
L. M. Chamra

Cooling, Heating and Power (CHP) systems are a form of distributed generation that uses internal combustion prime-power engines to generate electricity while recovering heat for other uses. CHP is a promising technology for increasing energy efficiency through the use of distributed electric and thermal energy recovery-delivery systems at or near end-user sites. Although this technology seems to be economically feasible, the evaluation and comparison of CHP systems cannot be restricted to economical considerations only. Standard economic analysis, such as life cycle economic analysis, does not take in consideration all the benefits that can be obtained from this technology. For this reason, several aspects to perform a non-conventional evaluation of CHP systems have to be considered. Among the aspects to be included in a non-conventional evaluation are: power reliability, power quality, environmental quality, energy-efficient buildings, fuel source flexibility, brand and marketing benefits, protection from electric rate hikes, and benefits from promoting energy management practices. Some benefits of these non-economical evaluations can be transferred into an economic evaluation but others give intangible potential to the technology. This paper focus on a non-conventional evaluation based on energy-efficient buildings, which is associated to energy conservation and improvement of the building energy performance rating for government energy programs like Energy Star and Leadership in Energy and Environmental Design (LEED). Results show that the use of CHP systems could improve the Energy Star Rating in more than 50 points. The Energy Star Rating is significant on the LEED Rating as a building can score up to 10 points of the 23 available in the Energy & Atmosphere category on energy efficiency alone. As much as 8 points can be obtained in this category due to the Energy Star rating increment from the use of CHP systems. Clearly the use of CHP systems will help building owners to reach the benefits from these energy programs while improving the overall energy use and energy cost.


Sign in / Sign up

Export Citation Format

Share Document