Structure of multi-functional calcium phosphates/TiO2 layers deposited on NiTi shape-memory alloy

2017 ◽  
Vol 32 (S1) ◽  
pp. S99-S105
Author(s):  
Tomasz Goryczka ◽  
Karolina Dudek

The structure of the NiTi matrix covered by multi-layer was studied applying X-ray diffraction techniques supported by electron microscopy. Multi-layer was composed from titanium oxide (passivation) followed by mixture of the hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) (electrophoresis). Conditions of deposition as well as sintering did not change the nominal ratio of HAp/TCP and saved their original structure. Also, the passivated NiTi matrix and with HAp/TCP-deposited layer did not change structure. However, sintering, done for HAp/TCP consolidation, introduced local differences in the lattice parameter as well as phase composition of the NiTi matrix. In consequence of that, two-steps martensitic transformation occurred in sintered NiTi/TiO2/Hap–TCP composite.

2022 ◽  
Vol 64 (2) ◽  
pp. 149
Author(s):  
С.Г. Меньшикова ◽  
В.В. Бражкин

Abstract The structure, elemental and phase composition of the eutectic alloy Al86Ni2Со6Gd6 (hereinafter referred to as at.%) During the solidification of the melt from 1500oC at a rate of 1000oC/s under high pressure of 3 and 7 GPa have been investigated by X-ray diffraction analysis and electron microscopy. Solidification of the melt under high pressure leads to a change in the phase composition of the alloy and the formation of an anomalously supersaturated solid solution of α-Al (Gd). At a pressure of 7 GPa, new phases were synthesized: Al3Gd * (like Al3U) containing Co and Ni, with a primitive cube structure (cP4/2) with a lattice parameter a = 4.285 ± 0.002 Angstrem and Al8Co4Gd * (like Al8Cr4Gd) with a tetragonal structure (tI26/1) with parameters a = 8.906 ± 0.003 Angstrem and c = 5.150 ± 0.003 Angstrem. The structure of all the samples obtained is homogeneous, dense, finely dispersed, without shrinkage cavities and pores. The average microhardness of the samples is high due to solid solution and precipitation hardening.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


2010 ◽  
Vol 24 (30) ◽  
pp. 5973-5985
Author(s):  
M. GUNES ◽  
H. GENCER ◽  
T. IZGI ◽  
V. S. KOLAT ◽  
S. ATALAY

NiFe 2 O 4 nanoparticles were successfully prepared by a hydrothermal process, and the effect of temperature on them was studied. The particles were annealed at various temperatures ranging from 413 to 1473 K. Studies were carried out using powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analysis, thermogravimetric analysis and a vibrating sample magnetometer. The annealing temperature had a significant effect on the magnetic and structural parameters, such as the crystallite size, lattice parameter, magnetization and coercivity.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4171 ◽  
Author(s):  
Paweł Rutkowski ◽  
Jan Huebner ◽  
Adrian Graboś ◽  
Dariusz Kata ◽  
Dariusz Grzybek ◽  
...  

In this study, the influence of the addition of rare earth oxides on the phase composition and density of KNN piezoelectric ceramics was investigated. The initial powders of Na2CO3 and K2CO3 were dried at 150 °C for 2 h. Then, a powder mixture for synthesis was prepared by adding a stoichiometric amount of Nb2O5 and 5 and 10 wt % overabundance of Na2CO3. All powders were mixed by ball-milling for 24 h and synthesized at 950 °C. The phase composition of the reaction bed was checked by means of X-ray diffraction (XRD). It had an appearance of tetragonal and monoclinic K0.5Na0.5NbO3 (KNN) phases. Then, 1 and 2 wt % of Er2O3 and Yb2O3, were added to the mixture. Green samples of 25 mm diameter and 3 mm thickness were prepared and sintered by hot pressing at 1000 °C for 2 h under 25 MPa pressure. The final samples were investigated via scanning electron microscopy (SEM)-energy-dispersive X-ray spectroscopy (EDS), XRD, Rietveld, and ultrasonic methods. Phase analysis showed tetragonal and orthorhombic KNN phases, and a contamination of (K2CO3·1.5H2O) was present. The obtained KNN polycrystals had a relative density above 95%. Texturing of the material was confirmed as a result of hot pressing.


2008 ◽  
Vol 368-372 ◽  
pp. 977-979
Author(s):  
Sheng Li Jin ◽  
Ya Wei Li ◽  
Jing Liu ◽  
Yuan Bing Li ◽  
Lei Zhao ◽  
...  

AlN/Al ceramic composite was fabricated by directed melt nitridation of pure Al block covered with 10wt% Mg powder at 1300°C in a high purity flowing N2. Microstructure and phase composition of the composite were investigated by scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction. Results showed that AlN is the main phase in the composite and its lattice parameters of a and c are 3.1110Å and 4.9806Å, respectively. The phase composition of the composite changes along the growth direction and a gradient sandwich structure forms. The surface of the composite is made up of a dense and thin nodular AlN layer, underneath which an AlN/Al layer appears, followed by an AlN/Al/MgAl2O4 layer. Thermodynamic calculations predicted the formation of possible phases with the addition of Mg. It suggested that the content of Mg at the reaction frontier of nitridation is considerably lower to 0.15wt% where MgAl2O4 was stable, because of escape and reaction exhaustion of Mg. Once Mg is lower than 0.05wt%, only a dense AlN layer can exist, which prevents the further nitridation of Al melt.


2003 ◽  
Vol 807 ◽  
Author(s):  
A. G. Ptashkin ◽  
S. V. Stefanovsky ◽  
S. V. Yudintsev ◽  
S. A. Perevalov

ABSTRACTPu-bearing zirconolite and pyrochlore based ceramics were prepared by melting under oxidizing and reducing conditions at 1550 °C. 239Pu content in the samples ranged between ∼10 and ∼50 wt.%. Phase composition of the ceramics and Pu partitioning were studied using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive system (SEM/EDS). Major phases in the samples were found to be the target zirconolite and pyrochlore as well as a cubic fluorite structure oxide. Normally the Pu content in the Pu host phases was 10–12 wt.%. This corresponds to the Pu content recommended for matrices for immobilization of excess weapons plutonium. At higher Pu content (up to 50 wt.%) additional phases, such as a PuO2-based cubic fluorite-structured solid solution, perovskite, and rutile were found.


2010 ◽  
Vol 152-153 ◽  
pp. 1683-1686
Author(s):  
Qing Wang ◽  
Ya Hui Zhang

Biomorphic silicon carbide (bioSiC) was prepared by high temperature pyrolysis and sol-gel and carbothermal reduction processing at 1600 oC. The morphology and microstructure of carbon-silica composites and purified bioSiC samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the bioSiC mainly consists of cubic ß-SiC, and principally replicates the shape and microstructure of the carbon template.


2012 ◽  
Vol 602-604 ◽  
pp. 526-529
Author(s):  
Qing Wang ◽  
Lin Zhang ◽  
Ya Hui Zhang

Biomorphic TiO2 was prepared by high temperature pyrolysis and a modified sol-gel route. The morphology and microstructure of TiO2 samples were characterized by scanning electron microscopy. The phase composition of the resulting sample was analyzed by X-ray diffraction. The results suggest that the biomorphic TiO2 mainly consists of rutile TiO2, and replicates the shape and part microstructure of the carbon template.


2012 ◽  
Vol 727-728 ◽  
pp. 982-987
Author(s):  
E. de Carvalho ◽  
Marcelo Bertolete ◽  
Izabel Fernanda Machado ◽  
E.N.S. Muccillo

Polycrystalline CaCu3Ti4O12 ceramics were prepared by solid state reactions by spark plasma sintering (SPS) technique. In this study, the effects of the dwell temperature on structural, microstructural and dielectric properties of CaCu3Ti4O12 ceramics have been investigated. Powder mixtures were calcined at 900°C for 18 h before SPS consolidation. The dwell temperatures were 850, 900, 915 and 930°C. Sintered pellets were characterized by X-ray diffraction, scanning electron microscopy and impedance spectroscopy. X-ray diffraction patterns show evidences of a single-phase perovskite-type structure. The calculated lattice parameter is 7.40 Å. The hydrostatic density increases slightly with increasing dwell temperature. Scanning electron microscopy observations revealed a heterogeneous microstructure for all samples. The dielectric loss remains constant over a wide temperature range. The obtained permittivity is approximately 103 at 1 kHz. The increase of the dwell temperature is found to produce a brittle ceramic.


Sign in / Sign up

Export Citation Format

Share Document