scholarly journals Cu K-edge XANES: polymer, organic, inorganic spectra, and experimental considerations

2017 ◽  
Vol 32 (S2) ◽  
pp. S28-S32 ◽  
Author(s):  
Mikael Larsson ◽  
Johan B. Lindén ◽  
Simarpreet Kaur ◽  
Brock Le Cerf ◽  
Ivan Kempson

In pursuit of design and characterisation of Cu adsorbing in thin films, we present data from a large variety of Cu-K edge X-ray Absorption Near Edge Spectroscopy (XANES) spectra obtained from organic and inorganic standards. Additionally, we have explored the impact of beam damage inducing redox alterations. Polymer nanoparticles were tested against films to produce higher concentration samples while maintaining high surface area to bulk effects. Spectra from nanoparticles were highly comparable to thin films of ~8 nm thickness, implying comparable contributions by surface effects on copper association. Finally, we observed no impact on Cu XANES spectra from vitrification with dimethyl sulfoxide to produce amorphous frozen, hydrated samples. The spectra should act as a valuable resource in assisting the design of experiments and identification of copper associations.

2014 ◽  
Vol 104 (24) ◽  
pp. 242113 ◽  
Author(s):  
Sin Cheng Siah ◽  
Sang Woon Lee ◽  
Yun Seog Lee ◽  
Jaeyeong Heo ◽  
Tomohiro Shibata ◽  
...  

2020 ◽  
Vol 20 (7) ◽  
pp. 4210-4215 ◽  
Author(s):  
Atul Kumar ◽  
Suman Gahlyan ◽  
Rajesh Thakur ◽  
Sunita Devi ◽  
Surender Duhan

SBA-16 is a mesoporous nanostructure with high surface area and cubic symmetry which make them an ideal carrier to carry different nanoparticles. Zinc peroxide (ZnO2) is a novel nanoparticle that inhibits the growth of microorganisms due to its antiseptic property. Thin film of SBA-16 and SBA-16/ZnO2 was deposited on glass slide by spin coating method. Anti-biofilm property of the thin films was examined against E. coli and S. aureus bacteria. Structural property was found out by wide angle X-ray diffraction (XRD), small angle X-ray scattering (SAXS) and High Resolution Transmission Electron Microscope (HRTEM). Fourier Transform Infrared Spectrophotometer (FTIR) was used to confirmation the presence of ZnO2 in Nano-composite and AFM utilized for surface topography of thin films. Fluorescent microscope image clearly revealed that SBA-16/ZnO2 nanocomposite thin film significantly inhibit the biofilm formation against both E. coli (gram negative bacteria) as well as S. aureus (gram positive bacteria) in comparision to SBA-16. The antimicrobial behavior of ZnO nanoparticle is due to formation of H2O2 as reactive oxygen species (ROS) to which the bacterial cells are permeable. H2O2 is a powerful oxidizing agents that oxidized the mycobacterial elements like DNA and proteins which results into the toxicity of the bacteria cell.


2020 ◽  
Vol 33 (1) ◽  
pp. 159-165
Author(s):  
Shylaja Singam ◽  
Anand Rao Mesineni ◽  
Ch. Shilpa Chakra

Urea and phosphorous fertilizers are commonly used in agriculture but, due to their solubility in water and transportation, cause eutrophication. Hence, it is thought worthwhile to investigate for urea hydroxyapatite nanoparticles which have less mobility and could supply required N and P macronutrients to the crops. These high surface area nanoparticles are synthesized through chemical co-precipitation method and it is assumed that due to their biocompatibility, act as rich phosphorous and nitrogen source. These are characterized by powder X-ray diffraction (PXRD), dynamic light scattering (DLS), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDX) and Fourier transform infrared (FT-IR). The impact of urea hydroxyapatite nanofertilizer on growth and yield of cluster bean plants for the period of four months has been carried out. The experimental results have shown that the usage of these nanofertilizers have enhanced both the plant growth and yield. The application of urea hydroxyapatite nanocomposites for the bio-availability of plants considered to be environment friendly.


1998 ◽  
Vol 13 (4) ◽  
pp. 1022-1032 ◽  
Author(s):  
M. R. Hilton ◽  
G. Jayaram ◽  
L. D. Marks

The effect of cosputtering small amounts of Ni (3%, 9%) and SbOx (20%) on the final microstructure of MoS2 lubricant thin films has been studied using a combination of scanning and transmission electron microscopy imaging, and electron and x-ray diffraction techniques. The early-growth, near-interface microstructure of both MoS2 and 3% Ni–MoS2 cosputtered films is revealed to be a mixture of (002) basal and elongated, large-size (100) and (110) edge islands. Cosputtering with 9% Ni induces a dramatic change in the microstructure, i.e., primarily basal domains with very small isolated regions of edge islands, while cosputtering with 20% SbOx produces films having no long-range order. The results are compared with and are consistent with previously published x-ray absorption fine structure data. The impact of film morphology on tribological performance is discussed.


Catalysts ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1456
Author(s):  
Yujie Fu ◽  
You Zhang ◽  
Qi Xin ◽  
Zhong Zheng ◽  
Yu Zhang ◽  
...  

Chlorinated volatile organic compounds (CVOCs) are vital environmental concerns due to their low biodegradability and long-term persistence. Catalytic combustion technology is one of the more commonly used technologies for the treatment of CVOCs. Catalysts with high low-temperature activity, superior selectivity of non-toxic products, and resistance to chlorine poisoning are desirable. Here we adopted a plasma treatment method to synthesize a tin-doped titania loaded with ruthenium dioxide (RuO2) catalyst, possessing enhanced activity (T90%, the temperature at which 90% of dichloromethane (DCM) is decomposed, is 262 °C) compared to the catalyst prepared by the conventional calcination method. As revealed by transmission electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction, the high surface area of the tin-doped titania catalyst and the enhanced dispersion and surface oxidation of RuO2 induced by plasma treatment were found to be the main factors determining excellent catalytic activities.


2000 ◽  
Vol 454-456 ◽  
pp. 723-728 ◽  
Author(s):  
H. Magnan ◽  
P. Le Fèvre ◽  
A. Midoir ◽  
D. Chandesris ◽  
H. Jaffrès ◽  
...  

2011 ◽  
Author(s):  
Yogesh Kumar ◽  
Abhinav Pratap Singh ◽  
P. Thakur ◽  
Ravi Kumar ◽  
Alka B. Garg ◽  
...  

2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


Sign in / Sign up

Export Citation Format

Share Document