Velvetleaf (Abutilon theophrasti) Effect on Corn (Zea mays) Growth and Yield in South Dakota

1995 ◽  
Vol 9 (4) ◽  
pp. 665-668 ◽  
Author(s):  
Chad Scholes ◽  
Sharon A. Clay ◽  
Kalyn Brix-Davis

Studies were conducted at two sites in South Dakota in 1992 and at one site in 1993 to measure the effect of velvetleaf on corn growth and yield. Velvetleaf was overseeded in corn rows and thinned to densities of 0, 1.3, 4, 12, and 24 plants/m2. Velvetleaf leaf area index and total biomass were positively correlated with velvetleaf density. Biomass per velvetleaf plant and corn biomass were correlated negatively with velvetleaf density. The percent corn yield reduction was similar for locations and years in spite of large yield differences. Maximum yield loss estimated by a hyperbolic yield reduction model was 37.2% with a loss of 4.4% per unit velvetleaf density.

Weed Science ◽  
1998 ◽  
Vol 46 (5) ◽  
pp. 569-574 ◽  
Author(s):  
John L. Lindquist ◽  
David A. Mortensen

Improved crop tolerance and weed suppressive ability are tactics that may reduce the negative effect of weeds on crop yield. Irrigated field experiments were conducted to compare leaf area index (LAI), intercepted photosynthetic photon flux (PPF), and relative tolerance and velvetleaf suppressive ability among two old (circa 1940) and two modern corn hybrids. Each hybrid was grown in monoculture and in mixture with velvetleaf at 1, 4, 16, and 40 plants m−1row. Plants were periodically harvested in monoculture plots to obtain estimates of corn LAI, and PPF interception was measured. Variation in hybrid tolerance to velvetleaf competition for light was evaluated by comparing among hybrids the coefficients of a regression of corn yield loss on velvetleaf density. Velvetleaf seed capsule production in the presence of each hybrid was compared to evaluate variation in velvetleaf suppressive ability among hybrids. Maximum corn yield loss was 32% lower for the two old hybrids, and velvetleaf capsule production was reduced by 62% at low velvetleaf densities in 1995 compared to the modern hybrids. In 1996, yield loss of the modern hybrid 3394 was 74% lower than that of the other three hybrids at low velvetleaf densities, whereas maximum yield loss of the old hybrid 336 was 44% lower at high densities. Velvetleaf capsule production did not vary among hybrids at any velvetleaf density in 1996. Hybrids with greater tolerance and velvetleaf suppressive ability also had greater LAI and PPF interception, suggesting optimized corn LAI and PPF interception may be useful in an integrated weed management program.


Author(s):  
Michele Maglie ◽  
Costanza Baldisserotto ◽  
Alessandra Guerrini ◽  
Alessandra Sabia ◽  
Lorenzo Ferroni ◽  
...  

AbstractThe biotechnological potential of microalgae has gained considerable importance in many applied fields: biomass production for food and feed, cosmeceutical and pharmaceutical products, energy and phytoremediation. The driving force that inspires the progress in microalgae production is the need for new cultivation systems to obtain simultaneously the maximum yield, reduction of water and nutrients use, and production of economically interesting molecules, such as pigments, fatty acids and polysaccharides. We aim to test, for the first time, the co-cultivation in saline medium of Tisochrysis lutea (Haptophyta) and Nannochloropsis oculata (Ochrophyta) to obtain valuable compounds, i.e. pigments and lipids characteristic of each species, using a single culture process. Mono-cultures of each strain were used as controls. The two strains showed an increase in the concentration of chlorophylls and carotenoids in co-culture. At the end of the experiment, the fatty acid profile was analysed by gas chromatography–mass spectrometry. The lipids in the co-cultivated cell extracts were mainly attributable to N. oculata, which represented 97% of the total cells (ca. 83% of the total biomass) at the end of the experiment. Nevertheless, the ω-3 characteristic of T. lutea (DHA and SDA, absent in N. oculata) was also detectable. Although the co-cultivation of these two phylogenetically different species of microalgae did not show positive effects on the growth and on the total lipid production, however, this process resulted in a reduction of the production costs and a lower consumption of water and nutrients.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 354-363 ◽  
Author(s):  
Darren C. Barker ◽  
Stevan Z. Knezevic ◽  
Alex R. Martin ◽  
Daniel T. Walters ◽  
John L. Lindquist

Weeds that respond more to nitrogen fertilizer than crops may be more competitive under high nitrogen (N) conditions. Therefore, understanding the effects of nitrogen on crop and weed growth and competition is critical. Field experiments were conducted at two locations in 1999 and 2000 to determine the influence of varying levels of N addition on corn and velvetleaf height, leaf area, biomass accumulation, and yield. Nitrogen addition increased corn and velvetleaf height by a maximum of 15 and 68%, respectively. N addition increased corn and velvetleaf maximum leaf area index (LAI) by up to 51 and 90%. Corn and velvetleaf maximum biomass increased by up to 68 and 89% with N addition. Competition from corn had the greatest effect on velvetleaf growth, reducing its biomass by up to 90% compared with monoculture velvetleaf. Corn response to N addition was less than that of velvetleaf, indicating that velvetleaf may be most competitive at high levels of nitrogen and least competitive when nitrogen levels are low. Corn yield declined with increasing velvetleaf interference at all levels of N addition. However, corn yield loss due to velvetleaf interference was similar across N treatments except in one site–year, where yield loss increased with increasing N addition. Corn yield loss due to velvetleaf interference may increase with increasing N supply when velvetleaf emergence and early season growth are similar to that of corn.


Weed Science ◽  
1984 ◽  
Vol 32 (3) ◽  
pp. 364-370 ◽  
Author(s):  
Ronald C. Cordes ◽  
Thomas T. Bauman

Detrimental effects on growth and yield of soybeans [Glycine max(L.) Merr. ‘Amsoy 77′] from density and duration of competition by ivyleaf morningglory [Ipomea hederacea(L.) Jacq. ♯3IPOHE] was evaluated in 1981 and 1982 near West Lafayette, IN. Ivyleaf morningglory was planted at densities of 1 plant per 90, 60, 30, and 15 cm of row in 1981 and 1 plant per 60, 30, 15, and 7.5 cm of row in 1982. Each density of ivyleaf morningglory competed for 22 to 46 days after emergence and the full season in 1981, and for 29 to 60 days after emergence and the full season in 1982. The best indicators of competition effects were leaf area index, plant dry weight, and yield of soybeans. Ivyleaf morningglory was more competitive during the reproductive stage of soybean growth. Photosynthetic irradiance and soil moisture measurements indicated that ivyleaf morningglory does not effectively compete for light or soil moisture. All densities of ivyleaf morningglory could compete with soybeans for 46 and 60 days after emergence in 1981 and 1982, respectively, without reducing soybean yield. Full-season competition from densities of 1 ivyleaf morningglory plant per 15 cm of row significantly reduced soybean yield by 36% in 1981 and 13% in 1982. The magnitude of soybean growth and yield reduction caused by a given density of ivyleaf morningglory was greater when warm, early season temperatures favored rapid weed development.


Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 515-520 ◽  
Author(s):  
H. M. Booker ◽  
P. Umaharan ◽  
C. R. McDavid

Field experiments were carried out in St. Augustine, Trinidad & Tobago, West Indies to determine the effects of time of inoculation of Cowpea severe mosaic virus (CPSMV) and cultivar on crop growth and yield in cowpea (Vigna unguiculata). Crop growth and yield loss were investigated through growth analysis and yield component analysis on three cultivars in two seasons (wet and dry). Time of inoculation had the most profound impact on yield. Inoculations during the early log phase (seedling stage), 12 days after seeding (DAS), consistently had the greatest impact (50 to 85% yield loss) compared with those inoculated during the exponential growth phase (24 DAS; 22 to 66% yield loss) or linear growth phase (35 DAS; 2 to 36% yield loss). The effects were particularly pronounced in the dry season and in the more determinate cultivar, H8-8-27. Reduction in maximum leaf area index, leaf area duration, or maximum vegetative dry matter explained reductions in yield. Yield reductions resulted primarily from reduced pod number per plant and, to a lesser extent, from reduced average pod dry weight. The results show that CPSMV control measures should be aimed at delaying infection by CPSMV to minimize the impact on cowpea yield.


Weed Science ◽  
2007 ◽  
Vol 55 (2) ◽  
pp. 143-146 ◽  
Author(s):  
Theodore M. Webster ◽  
Richard F. Davis

Southern Root-Knot nematode and common cocklebur interfere with cotton growth and yield. A greater understanding of the interaction of these pests with cotton growth and yield is needed for effective integrated pest management (IPM). An additive design was used in outdoor microplots with five common cocklebur densities (0, 1, 2, 4, and 8 plants per plot) growing in competition with cotton, with and without the presence of southern Root-Knot nematode. Differences in cotton height could not be detected among common cocklebur densities or nematode presence at 3 wk after transplanting (WAT); however, differences in crop height were observed at 5 WAT between nematode treatments. In the absence of nematodes, the relationship between cotton yield loss and common cocklebur density was described by a rectangular hyperbolic regression model (P < 0.0001). Maximum yield loss from common cocklebur in the absence of nematodes exceeded 80%. In the presence of nematodes, there was a linear relationship between cotton yield loss and common cocklebur density (P = 0.0506). The presence of nematodes at each common cocklebur density increased cotton yield loss 15 to 35%. Common cocklebur plant biomass was 25% greater in nematode treatments, likely because of the reduced competitiveness of the cotton plants in these plots. This study demonstrates that multiple pests can interact to cause an additive reduction in crop yield.


2021 ◽  
Vol 13 (SI) ◽  
pp. 130-134
Author(s):  
R. Sowmiya ◽  
N. Sakthivel

Plant population is an important attribute in crop management practice. Increasing the plant density by decreasing the crop row spacing was an alternative strategy to optimize crop profit. Hence, the field trial was conducted at Tamil Nadu Agricultural University, Coimbatore, during the winter season of 2017 – 18 to study the effect of row spacing on the growth and yield of cotton genotype TCH 1819. The experimental design was Randomized Block Design (RBD) with seven spacing treatments viz., T1: 60 x 15 cm (1,11,111 plants ha-1), T2: 60 x 20 cm (83,333 plants ha-1), T3: 75 x 15 cm (88,888 plants ha-1), T4: 75 x 20 cm (66,666 plants ha-1), T5: 75 x 30 cm (44,444 plants ha-1), T6: 90 x 15 cm (74074 plants ha-1), T7: 90 x 20cm (55,555 plants ha-1) and was replicated thrice.  Plant densities showed a significant (p=0.05) difference for all the characters studied.  The higher plant density of 1,11,111 plants (60 x 15 cm) observed significantly (p=0.05) maximum plant height (103.14 cm), Leaf Area Index (LAI) (4.35), Dry Matter Production (DMP) (8125 kg/ha), Crop Growth Rate (CGR) (6.58 g/m2/day), root length (41.46 cm), root dry weight (14.94 g/plant), and chlorophyll index (48.24).  The number of sympodial branches per plant (17) and bolls per plant (22 bolls) was found significant in the wider spacing of 75 x 30 cm.  The narrow spacing of 60 x 15 cm noted the highest seed cotton yield (2565 kg/ha), net return (R65706.62), and B: C (2.32) ratio, followed by the spacing of 75 x 15 cm due to more plant density per unit area (m2).  So, maximum yield in cotton can be achieved by decreasing the row spacing and increasing the plant population per unit area.


1995 ◽  
Vol 120 (6) ◽  
pp. 956-963 ◽  
Author(s):  
David W. Wolfe ◽  
Daniel T. Topoleski ◽  
Norman A. Gundersheim ◽  
Betsy A. Ingall

A 3-year field study conducted on an Eel silt loam soil (Aquic Udifluvent) compared cabbage (Brussica oleracea L. capitata group), cucumber (Cucumis sativus L.), snap bean (Phaseolus vulgaris L.), and sweet corn (Zea mays L.) for their growth and yield response to an artificially compacted soil layer beginning at about the 10-cm depth. Slower growing cabbage seedlings in compacted plots were more subject to flea beetle damage than the uncompacted controls. Prolonged flooding after heavy rainfall events in compacted areas had a more adverse effect on cabbage and snap bean than on cucumber or sweet corn. Sweet corn showed almost no growth reduction in one of the three years (1993) when relatively high fertilizer rates were applied and leaf nitrogen deficiencies in compacted plots were prevented. Maturity of cabbage, snap bean, and cucumber was delayed, and the average reduction in total marketable yield in (direct-seeded) compacted plots was 73%, 49%, 41%, and 34% for cabbage, snap bean, cucumber and sweet corn, respectively. Yield reduction in transplanted cabbage (evaluated in 1993 only) was 29%. In a controlled environment greenhouse experiment using the same soil type and similar compaction treatment as the field study, compaction caused a reduction in total biomass production of 30% and 14% in snap bean and cabbage, respectively, while cucumber and sweet corn showed no significant response. The growth reductions of snap bean and cabbage in the greenhouse could not be attributed to compaction effects on soil water status, leaf turgor, nutrient deficiency, or net CO, assimilation rate of individual leaves. Root growth of sweet corn was least restricted by the compacted soil layer. The contrast between our field and greenhouse results indicates that the magnitude of yield response to compaction in the field was often associated with species sensitivity to secondary effects of compaction, such as prolonged flooding after rainfall events, reduced nutrient availability or uptake, and prolonged or more severe pest pressure.


2011 ◽  
Vol 46 (6) ◽  
pp. 567-577 ◽  
Author(s):  
Paulo Jorge de Oliveira Ponte de Souza ◽  
José Renato Bouças Farias ◽  
José Paulo Mourão de Melo e Abreu ◽  
Aristides Ribeiro ◽  
Edson José Paulino da Rocha ◽  
...  

The objective of this work was to parameterize, calibrate, and validate a new version of the soybean growth and yield model developed by Sinclair, under natural field conditions in northeastern Amazon. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, PA, Brazil, from 2006 to 2009. The climatic conditions during the experiment were very distinct, with a slight reduction in rainfall in 2007, due to the El Niño phenomenon. There was a reduction in the leaf area index (LAI) and in biomass production during this year, which was reproduced by the model. The simulation of the LAI had root mean square error (RMSE) of 0.55 to 0.82 m² m-2, from 2006 to 2009. The simulation of soybean yield for independent data showed a RMSE of 198 kg ha-1, i.e., an overestimation of 3%. The model was calibrated and validated for Amazonian climatic conditions, and can contribute positively to the improvement of the simulations of the impacts of land use change in the Amazon region. The modified version of the Sinclair model is able to adequately simulate leaf area formation, total biomass, and soybean yield, under northeastern Amazon climatic conditions.


2015 ◽  
Vol 33 (1) ◽  
pp. 67-75 ◽  
Author(s):  
M. SIBTAIN ◽  
A. TANVEER ◽  
M.M. JAVAID ◽  
H.H. ALI

Chickpea yield potential is limited by weed competition in typical chickpea growing areas of Pakistan where zero tillage crop grown on moisture conserved from rains received during the months of September and August. The objective of this work was to evaluate the growth and yield characteristics of chickpea grown in coexistence with increasing densities of wild onion (Asphodelus tenuifolius). The experiment was comprised of six density levels viz. zero, 20, 40, 80, 160 and 320 plants m-2 of A. tenuifolius. A decrease in chickpea primary and secondary branches per plant, pods per plant, seeds per pod, 100-seed weight and seed yield was observed due to more accumulation of dry matter per increasing densities of A. tenuifolius. The increase in A. tenuifolius density accelerated chickpea yield losses and reached the maximum values of 28, 35, 42, 50, 58 and 96% at 20, 40, 80, 160 and 320 A. tenuifolius plants m-2, respectively. The yield loss estimation model showed that chickpea losses with infinite A. tenuifolius density were 60%. Yield reduction could be predicted by 2.52% with increase of one A. tenuifolius plant m-2. It is concluded that A. tenuifolius has a strong influence on chickpea seed yield and showed a linear response at the range of densities studied.


Sign in / Sign up

Export Citation Format

Share Document