scholarly journals Pseudomonas aeruginosa as a cause of infectious diarrhoea

1998 ◽  
Vol 121 (1) ◽  
pp. 237-241 ◽  
Author(s):  
P. A. ADLARD ◽  
S. M. KIROV ◽  
K. SANDERSON ◽  
G. E. COX

Pseudomonas aeruginosa is not generally considered a cause of infectious diarrhoea. However, it was the predominant organism isolated from the faeces of 23 unrelated, hospital outpatients investigated in the course of a year for persistent (>1 week duration) diarrhoea. To investigate the possible aetiological role of P. aeruginosa, these patient histories were reviewed and a selection of their faecal isolates were investigated in vitro (n[ges ]10) and in vivo (n=2) for virulence. The patients had a mean age of 60 years, were receiving antibiotics and/or had an underlying illness. Extensive microbiological investigations identified no other potential or recognized enteropathogen in the faeces of 20 of these patients. More than 40% of the isolates tested were able to adhere to HEp-2 cells and exhibited twitching motility (type IV pili), properties indicative of their ability to colonize the human intestine. Cytotoxic activity was demonstrated in bacterium-free cell supernatants of over 80% of isolates; supernatants of four isolates tested in infant mice were weakly enterotoxigenic. Two isolates intragastrically inoculated into clindamycin pre-treated rats established persistent infections and induced signs and symptoms of enteritis. Overall these findings suggest that P. aeruginosa can cause diarrhoea particularly in immunodeficient individuals.

2009 ◽  
Vol 77 (5) ◽  
pp. 2065-2075 ◽  
Author(s):  
Chanez Chemani ◽  
Anne Imberty ◽  
Sophie de Bentzmann ◽  
Maud Pierre ◽  
Michaela Wimmerová ◽  
...  

ABSTRACT Pseudomonas aeruginosa is a frequently encountered pathogen that is involved in acute and chronic lung infections. Lectin-mediated bacterium-cell recognition and adhesion are critical steps in initiating P. aeruginosa pathogenesis. This study was designed to evaluate the contributions of LecA and LecB to the pathogenesis of P. aeruginosa-mediated acute lung injury. Using an in vitro model with A549 cells and an experimental in vivo murine model of acute lung injury, we compared the parental strain to lecA and lecB mutants. The effects of both LecA- and Lec B-specific lectin-inhibiting carbohydrates (α-methyl-galactoside and α-methyl-fucoside, respectively) were evaluated. In vitro, the parental strain was associated with increased cytotoxicity and adhesion on A549 cells compared to the lecA and lecB mutants. In vivo, the P. aeruginosa-induced increase in alveolar barrier permeability was reduced with both mutants. The bacterial burden and dissemination were decreased for both mutants compared with the parental strain. Coadministration of specific lectin inhibitors markedly reduced lung injury and mortality. Our results demonstrate that there is a relationship between lectins and the pathogenicity of P. aeruginosa. Inhibition of the lectins by specific carbohydrates may provide new therapeutic perspectives.


2016 ◽  
Vol 84 (12) ◽  
pp. 3458-3470 ◽  
Author(s):  
Mike Khan ◽  
Jerome S. Harms ◽  
Fernanda M. Marim ◽  
Leah Armon ◽  
Cherisse L. Hall ◽  
...  

Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host- Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a Δ bpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the Δ bpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase Δ cgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, Δ bpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection.


1996 ◽  
Vol 271 (5) ◽  
pp. L838-L843 ◽  
Author(s):  
P. P. Massion ◽  
A. Linden ◽  
H. Inoue ◽  
M. Mathy ◽  
K. M. Grattan ◽  
...  

In this study, we investigated the role of dimethyl sulfoxide (DMSO) in inhibiting interleukin-8 (IL-8)-mediated neutrophil recruitment induced by Pseudomonas aeruginosa (PA) bacterial supernatant. First, we tested whether DMSO could inhibit IL-8 production induced by PA in human bronchial epithelial (16-HBE) cells in vitro. In these cells, exposure to PA or H2O2 induced IL-8 production dose dependently, an effect that was inhibited by 1% DMSO at both the protein and RNA level. Second, we tested whether DMSO could block the recruitment of neutrophils induced by PA in a bypassed segment of dog trachea in vivo. PA supernatant was placed in the tracheal segment for 6 h in four dogs, and neutrophil recruitment and IL-8 concentrations were measured in the superfusate. DMSO prevented the recruitment of neutrophils and IL-8 production induced by PA time dependently. The results suggest that DMSO may play an anti-inflammatory role in the airway by inhibiting IL-8 production in epithelial cells.


2017 ◽  
Vol 41 (3) ◽  
pp. 1208-1218 ◽  
Author(s):  
Barbara Kovacic ◽  
Carolin Sehl ◽  
Barbara Wilker ◽  
Markus Kamler ◽  
Katrin Anne Becker ◽  
...  

Background: Cystic fibrosis (CF) is the most common autosomal-recessive disorder in western countries. Previous studies have demonstrated an important role of sphingolipids in the pathophysiology of cystic fibrosis. It has been shown that ceramide has a central role in various pulmonary infections, including those with Pseudomonas aeruginosa (P. aeruginosa). Ceramide is accumulated in the airways of CF mice and patients. However, little is known about a potential role of glucosylceramide in cystic fibrosis. Methods: We investigated the expression of glucosylceramide and lactosylceramide in the respiratory tract of murine and human CF samples by immunohistochemistry and analyzed effects of glucosylceramide on P. aeruginosa in vitro. We performed pulmonary infections with P. aeruginosa and tested inhalation with glucosylceramide. Results: We demonstrate that glucosylceramide is down-regulated on the apical surface of bronchial and tracheal epithelial cells in cystic fibrosis mice. Although glucosylceramide did not have a direct bactericidal effect on Pseudomonas aeruginosa in vitro, inhalation of CF mice with glucosylceramide protected these mice from infection with P. aeruginosa, while non-inhaled CF mice developed severe pneumonia. Conclusion: Our data suggest that glucosylceramide acts in vivo in concert with ceramide and sphingosine to determine the pulmonary defense against P. aeruginosa.


2004 ◽  
Vol 48 (7) ◽  
pp. 2659-2664 ◽  
Author(s):  
Giorgia Borriello ◽  
Erin Werner ◽  
Frank Roe ◽  
Aana M. Kim ◽  
Garth D. Ehrlich ◽  
...  

ABSTRACT The role of oxygen limitation in protecting Pseudomonas aeruginosa strains growing in biofilms from killing by antibiotics was investigated in vitro. Bacteria in mature (48-h-old) colony biofilms were poorly killed when they were exposed to tobramycin, ciprofloxacin, carbenicillin, ceftazidime, chloramphenicol, or tetracycline for 12 h. It was shown with oxygen microelectrodes that these biofilms contain large anoxic regions. Oxygen penetrated about 50 μm into the biofilms, which averaged 210 μm thick. The region of active protein synthesis was visualized by using an inducible green fluorescent protein. This zone was also limited to a narrow band , approximately 30 μm wide, adjacent to the air interface of the biofilm. The bacteria in mature biofilms exhibited a specific growth rate of only 0.02 h−1. These results show that 48-h-old colony biofilms are physiologically heterogeneous and that most of the cells in the biofilm occupy an oxygen-limited, stationary-phase state. In contrast, bacteria in 4-h-old colony biofilms were still growing, active, and susceptible to antibiotics when they were challenged in air. When 4-h-old colony biofilms were challenged under anaerobic conditions, the level of killing by antibiotics was reduced compared to that for the controls grown aerobically. Oxygen limitation could explain 70% or more of the protection afforded to 48-h-old colony biofilms for all antibiotics tested. Nitrate amendment stimulated the growth of untreated control P. aeruginosa isolates grown under anaerobic conditions but decreased the susceptibilities of the organisms to antibiotics. Local oxygen limitation and the presence of nitrate may contribute to the reduced susceptibilities of P. aeruginosa biofilms causing infections in vivo.


1998 ◽  
Vol 42 (7) ◽  
pp. 1641-1645 ◽  
Author(s):  
Hiroko Ishida ◽  
Yoshihisa Ishida ◽  
Yuichi Kurosaka ◽  
Tsuyoshi Otani ◽  
Kenichi Sato ◽  
...  

ABSTRACT Interactions between biofilm cells of Pseudomonas aeruginosa and levofloxacin were studied. P. aeruginosa incubated for 6 days with Teflon sheets formed a biofilm on its surface. Against the biofilm bacteria, levofloxacin at an MIC determined by the standard method for the strain was highly bactericidal whereas gentamicin, ceftazidime, and ciprofloxacin showed no significant killing activity. Levofloxacin, ciprofloxacin, and gentamicin, but not ceftazidime, exhibited killing activity against nongrowing cells of the strain incubated in phosphate buffer. In addition, levofloxacin, ciprofloxacin, and ceftazidime, but not gentamicin, showed the ability to penetrate an agar containing alginate. These findings may explain the efficacy of levofloxacin and the ineffectiveness of gentamicin and ceftazidime against biofilm bacteria; however, the cause of the ineffectiveness of ciprofloxacin still remains to be determined. In experimental pneumonia in guinea pigs, in which the biofilm mode of growth of the strain was observed in the lung, only levofloxacin exhibited substantial therapeutic efficacy. These findings suggest the significant role of levofloxacin in therapy of biofilm bacterium-associated infectious diseases.


2019 ◽  
Author(s):  
Jennifer L. Chlebek ◽  
Hannah Q. Hughes ◽  
Aleksandra S. Ratkiewicz ◽  
Rasman Rayyan ◽  
Joseph Che-Yen Wang ◽  
...  

AbstractBacterial type IV pili are critical for diverse biological processes including horizontal gene transfer, surface sensing, biofilm formation, adherence, motility, and virulence. These dynamic appendages extend and retract from the cell surface. In many type IVa pilus systems, extension occurs through the action of an extension ATPase, often called PilB, while optimal retraction requires the action of a retraction ATPase, PilT. Many type IVa systems also encode a homolog of PilT called PilU. However, the function of this protein has remained unclear becausepilUmutants exhibit inconsistent phenotypes among type IV pilus systems and because it is relatively understudied compared to PilT. Here, we study the type IVa competence pilus ofVibrio choleraeas a model system to define the role of PilU. We show that the ATPase activity of PilU is critical for pilus retraction in PilT Walker A and/or Walker B mutants. PilU does not, however, contribute to pilus retraction in ΔpilTstrains. Thus, these data suggest that PilU is abona fideretraction ATPase that supports pilus retraction in a PilT-dependent manner. We also found that a ΔpilUmutant exhibited a reduction in the force of retraction suggesting that PilU is important for generating maximal retraction forces. Additionalin vitroandin vivodata show that PilT and PilU act as independent homo-hexamers that may form a complex to facilitate pilus retraction. Finally, we demonstrate that the role of PilU as a PilT-dependent retraction ATPase is conserved inAcinetobacter baylyi, suggesting that the role of PilU described here may be broadly applicable to other type IVa pilus systems.Author SummaryAlmost all bacterial species use thin surface appendages called pili to interact with their environments. These structures are critical for the virulence of many pathogens and represent one major way that bacteria share DNA with one another, which contributes to the spread of antibiotic resistance. To carry out their function, pili dynamically extend and retract from the bacterial surface. Here, we show that retraction of pili in some systems is determined by the combined activity of two motor ATPase proteins.


2018 ◽  
Author(s):  
Jianli Dai ◽  
Beatriz Estrada ◽  
Sofie Jacobs ◽  
Besaiz J. Sánchez-Sánchez ◽  
Jia Tang ◽  
...  

AbstractBasement membranes (BMs) are thin sheet-like specialized extracellular matrices found at the basal surface of epithelia and endothelial tissues. They have been conserved across evolution and are required for proper tissue growth, organization, differentiation and maintenance. The major constituents of BMs are two independent networks of Laminin and Type IV Collagen interlinked by the proteoglycan Perlecan and the glycoprotein Nidogen/entactin (Ndg). The ability of Ndg to bind in vitro Collagen IV and Laminin, both with key functions during embryogenesis, anticipated an essential role for Ndg on morphogenesis linking the Laminin and Collagen IV networks. This was supported by results from in vitro and cultured embryonic tissues experiments. However, the fact that elimination of Ndg in C. elegans and mice did not affect survival, strongly questioned this proposed linking role. Here, we have isolated mutations in the only Ndg gene present in Drosophila. We find that while, similar to C.elegans and mice, Ndg is not essential for overall organogenesis or viability, it is required for appropriate fertility. We also find, alike in mice, tissue-specific requirements of Ndg for proper assembly and maintenance of certain BMs, namely those of the adipose tissue and flight muscles. In addition, we have performed a thorough functional analysis of the different Ndg domains in vivo. Our results support an essential requirement of the G3 domain for Ndg function and unravel a new key role for the Rod domain in regulating Ndg incorporation into BMs. Furthermore, uncoupling of the Laminin and Collagen IV networks is clearly observed in the larval adipose tissue in the absence of Ndg, indeed supporting a linking role. In light of our findings, we propose that BM assembly and/or maintenance is tissue-specific, which could explain the diverse requirements of a ubiquitous conserved BM component like Nidogen.Author SummaryBasement membranes (BMs) are thin layers of specialized extracellular matrices present in every tissue of the human body. Its main constituents are two networks of Laminin and Type IV Collagen linked by Nidogen (Ndg) and proteoglycans. They form an organized scaffold that regulates organ morphogenesis and function. Mutations affecting BM components are associated with organ dysfunction and several congenital diseases. Thus, a better comprehension of BM assembly and maintenance will not only help to learn more about organogenesis but also to a better understanding and, hopefully, treatment of these diseases. Here, we have used Drosophila to analyse the role of Ndg in BM formation in vivo. Elimination of Ndg in worms and mice does not affect survival, strongly questioning its proposed linking role, derived from in vitro experiments. Here, we show that in the fly Ndg is dispensable for BM assembly and preservation in many tissues, but absolutely required in others. Furthermore, our functional study of the different Ndg domains challenges the significance of some interactions between BM components derived from in vitro experiments, while confirming others, and reveals a new key requirement for the Rod domain in Ndg function and incorporation into BMs.


2022 ◽  
Author(s):  
Alessandro Carabelli ◽  
Jean-Frederic Dubern ◽  
Maria Papangeli ◽  
Nicola E. Farthing ◽  
Olutoba Sanni ◽  
...  

Non-toxic, biocompatible materials that inhibit bacterial biofilm formation on implanted medical devices and so prevent infection are urgently required. Weakly amphiphilic acrylate polymers with rigid hydrocarbon pendant groups resist bacterial biofilm formation in vitro and in vivo but the biological mechanism involved is not known. By comparing biofilm formation on polymers with the same acrylate backbone but with different pendant groups, we show that poly(ethylene glycol dicyclopentenyl ether acrylate; pEGdPEA) but not neopentyl glycol propoxylate diacrylate (pNGPDA) inhibited the transition from reversible to irreversible attachment. By using single-cell tracking algorithms and controlled flow microscopy we observed that fewer Pseudomonas aeruginosa PAO1 cells accumulated on pEGdPEA compared with pNGPDA. Bacteria reaching the pEGdPEA surface exhibited shorter residence times and greater asymmetric division with more cells departing from the surface post-cell division, characteristic of reversible attachment. Migrating cells on pEGdPEA deposited fewer exopolysaccharide trails and were unable top adhere strongly. Discrimination between the polymers required type IV pili and flagella. On pEGdPEA, the lack of accumulation of cyclic diguanylate or expression of sadB were consistent with the failure to transit from reversible to irreversible attachment. Constitutive expression of sadB increased surface adhesion sufficient to enable P. aeruginosa to form biofilms in a Mot flagellar stator dependent manner. These findings were extendable to other biofilm resistant acrylates highlighting their unique ability to inhibit reversible to irreversible attachment as a mechanism for preventing biofilm-associated infections.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Junlan Liu ◽  
Zhen Shen ◽  
Jin Tang ◽  
Qian Huang ◽  
Ying Jian ◽  
...  

AbstractThough a definitive link between small colony variants (SCVs) and implant-related staphylococcal infections has been well-established, the specific underlying mechanism remains an ill-explored field. The present study analyzes the role SCVs play in catheter infection by performing genomic and metabolic analyses, as well as analyzing biofilm formation and impacts of glycine on growth and peptidoglycan-linking rate, on a clinically typical Staphylococcus epidermidis case harboring stable SCV, normal counterpart (NC) and nonstable SCV. Our findings reveal that S. epidermidis stable SCV carries mutations involved in various metabolic processes. Metabolome analyses demonstrate that two biosynthetic pathways are apparently disturbed in SCV. One is glycine biosynthesis, which contributes to remarkable glycine shortage, and supplementation of glycine restores growth and peptidoglycan-linking rate of SCV. The other is overflow of pyruvic acid and acetyl-CoA, leading to excessive acetate. SCV demonstrates higher biofilm-forming ability due to rapid autolysis and subsequent eDNA release. Despite a remarkable decline in cell viability, SCV can facilitate in vitro biofilm formation and in vivo survival of NC when co-infected with its normal counterparts. This work illustrates an intriguing strategy utilized by a glycine-auxotrophic clinical S. epidermidis SCV isolate to facilitate biofilm-related infections, and casts a new light on the role of SCV in persistent infections.


Sign in / Sign up

Export Citation Format

Share Document