Central volcanoes as sources for the Antarctic Peninsula Volcanic Group

1994 ◽  
Vol 6 (3) ◽  
pp. 365-374 ◽  
Author(s):  
Philip T. Leat ◽  
Jane H. Scarrow

From at least the Early Jurassic to the Miocene, eastward subduction of oceanic crust took place beneath the Antarctic Peninsula. Magmatism associated with the subduction generated a N-S linear belt of volcanic rocks known as the Antarctic Peninsula Volcanic Group (APVG), and which erosion has now exposed at about the plutonic/volcanic interface. Large central volcanoes from the APVG are described here for the first time. The structures are situated in north-west Palmer Land within the main Mesozoic magmatic arc. One centre, Zonda Towers, is recognized by the presence of a 160 m thick silicic ignimbrite, containing accidental lava blocks up to 25 m in diameter. This megabreccia is interpreted as a caldera-fill deposit which formed by land sliding of steep caldera walls during ignimbrite eruption and deposition. A larger centre, Mount Edgell-Wright Spires, is dominated by coarse-grained debris flow deposits and silicic ignimbrites which, with minor lavas and fine-grained tuffs, form a volcanic succession some 1.5 km thick. Basic intermediate and silicic sills c. 50 m thick intrude the succession. A central gabbro-granite intrusion is interpreted to be a high-level magma chamber of the Mount Edgell volcano.

2009 ◽  
Vol 21 (6) ◽  
pp. 633-641 ◽  
Author(s):  
P.T. Leat ◽  
M.J. Flowerdew ◽  
T.R. Riley ◽  
M.J. Whitehouse ◽  
J.H. Scarrow ◽  
...  

AbstractNew whole rock Rb-Sr and zircon U-Pb geochronological data and Sm-Nd isotopic data are presented from the central magmatic arc domain of the Antarctic Peninsula in the area of north-west Palmer Land and south-west Graham Land, Rb-Sr isochrons indicate an age of 169 ± 6 Ma for basement orthogneisses and 132 ± 9 to 71 ± 9 Ma for plutons. A U-Pb age of 183 ± 2.1 Ma, with no detectable inheritance, on zircons from an orthogneiss from Cape Berteaux provides the first reliable age for the orthogneisses, which are interpreted as metamorphosed silicic volcanic rocks, and Sm-Nd data indicate derivation in a mature volcanic arc. The age indicates they may be correlatives of the Jurassic ‘Chon Aike’ volcanism of the eastern Antarctic Peninsula. A U-Pb zircon age of 107 ± 1.7 Ma on a terrestrial volcanic sequence overlying an uncomformity strongly suggests a mid-Cretaceous age for the extensive volcanic cover of north-west Palmer Land that was previously thought to be Jurassic. The unconformity is interpreted to have been a result of compressional uplift related to the Palmer Land event. This is the first date for the event in the western part of the central magmatic arc terrane of the Antarctic Peninsula.


1997 ◽  
Vol 9 (2) ◽  
pp. 209-220 ◽  
Author(s):  
Joe J. McCarron

Late Cretaceous–early Tertiary subduction-related fore-arc volcanic rocks are exposed in a north–south linear belt along the length of Alexander Island. The age and tectonic setting of these rocks is well understood; they are not considered to represent “normal” arc magmas but were generated in the fore-arc as a result of ridge subduction. Due to their distinct composition and mode of formation, they are no longer considered to be genetically related to the Antarctic Peninsula magmatic arc. They are therefore removed from the Antarctic Peninsula Volcanic Group and placed in a newly defined Alexander Island Volcanic Group. The group is made up of the Monteverdi, Staccato, Walton, Colbert, Elgar and Finlandia formations, which vary widely in lithology, facies and age. The Colbert and Elgar formations are subdivided into nine and three members respectively. Type localities, representative lithologies and age of each of the formations are discussed. The Staccato and Colbert Magmatic complexes are defined to include volcanic and plutonic rocks that are considered to be coeval. The Rouen Intrusive complex combines the plutonic rocks from the Rouen Mountains and Rothschild Island on the basis of age and chemistry.


1997 ◽  
Vol 9 (4) ◽  
pp. 434-442 ◽  
Author(s):  
T.R. Riley ◽  
J.A. Crame ◽  
M.R.A. Thomson ◽  
D.J. Cantrill

New exposures of fossiliferous sedimentary rocks at Cape Framnes, Jason Peninsula (65°57′S, 60°33′W) are assigned to the Middle–Late Jurassic Latady Formation of the south-eastern Antarctic Peninsula region. A sequence of fine to coarse-grained sandstones of unknown thickness has yielded a molluscan and plant macrofossil assemblage rich in the following elements: perisphinctid ammonites, belemnopseid belemnites, oxytomid, trigoniid and astartid bivalves, and bennettitalean fronds and fructifications. The overwhelming age affinities are with the Kimmeridgian–early Tithonian part of the Latady Formation, as exposed on the Orville and Lassiter coasts. The Cape Framnes sedimentary rocks help to constrain the age of a major sequence of acid volcanic rocks on Jason Peninsula, and show that the Latady Basin was geographically much more extensive than recognized previously. It was the principal depositional centre of Middle–Late Jurassic sedimentation in the Antarctic Peninsula back-arc region and in areal extent may have rivalled the essentially Cretaceous Larsen Basin.


2011 ◽  
Vol 149 (5) ◽  
pp. 768-782 ◽  
Author(s):  
TEAL R. RILEY ◽  
MICHAEL J. FLOWERDEW ◽  
MARTIN J. WHITEHOUSE

AbstractThe Mesozoic fore-arc of the Antarctic Peninsula is exposed along its west coast. On Adelaide Island, a 2–3 km succession of turbiditic coarse sandstones and volcanic rocks is exposed. Four U–Pb (zircon) ages are presented here that, in combination with a new stratigraphy, have permitted a robust chrono- and lithostratigraphy to be constructed, which in turn has allowed tentative correlations to be made with the Fossil Bluff Group of Alexander Island, where the ‘type’ fore-arc sequences are described. The lithostratigraphy of Adelaide Island includes the definition of five volcanic/sedimentary formations. The oldest formation is the Buchia Buttress Formation (149.5 ± 1.6 Ma) and is correlated with the Himalia Ridge Formation of Alexander Island. The sandstone–conglomerate dominated succession of the Milestone Bluff Formation (113.9 ± 1.2 Ma) is tentatively correlated with the Pluto Glacier Formation of Alexander Island. Three dominantly volcanic formations are recognized on Adelaide Island, akin to the volcanic rocks of the Alexander Island Volcanic Group; the Mount Liotard Formation is formed of 2 km of basaltic andesite lavas, whilst the Bond Nunatak Formation is also dominated by basaltic andesite lavas, but interbedded with volcaniclastic rocks. The Reptile Ridge Formation has been dated at 67.6 ± 0.7 Ma and is characterized by hydrothermally altered rhyolitic crystal-lithic tuffs. Tentative correlations between Adelaide Island and Alexander Island preclude the two areas forming part of distinct terranes as has been suggested previously, and a proximal source for volcaniclastic sediments also indicates an exotic terrane origin is unlikely.


1996 ◽  
Vol 8 (4) ◽  
pp. 407-414 ◽  
Author(s):  
Francisco Hervé ◽  
Jorge Lobato ◽  
Ignacio Ugalde ◽  
Robert J. Pankhurst

Cape Dubouzet is mainly composed of a volcanic-subvolcanic complex of extrusive rhyolitic breccias, a banded rhyolite and a semi-annular body of dacite porphyry rich in xenoliths of metamorphic rocks. Major and REE geochemistry indicate that the volcanic rocks are calc-alkaline and that they are genetically related by fractional crystallization of a plagioclase-bearing assemblage from a common magma. Rb-Sr data suggest that the rhyolitic complex is of Middle-to-Late Jurassic age, and that it is intruded by Late Cretaceous stocks of banded diorite and gabbro. All these rocks are partially covered by moraines whose clasts are of local provenance. Xenoliths in the dacite porphyry suggest that the northern tip of the Antarctic Peninsula is underlain by a metamorphic complex composed of amphibolites, meta-tonalites and pelitic gneiss containing garnet, sillimanite, cordierite, hercynite, and andalucite. Such rocks are not known in the Scotia metamorphic complex, nor in the Trinity Peninsula Group and its low grade metamorphic derivatives, which also occur as rare xenoliths in the dacite. Previous dating of xenoliths collected from the moraines suggested a late Carboniferous age for this amphibolite-grade metamorphism. Both the Jurassic-Cenozoic magmatic arc of the Antarctic Peninsula and the accretionary complex rocks of the Trinity Peninsula Group were thus developed, at least in part, over pre-existing continental crust.


1981 ◽  
Vol 118 (2) ◽  
pp. 139-159 ◽  
Author(s):  
J. L. Smellie

SummaryPrior to Late Triassic–Early Jurassic times, the geological history of the Antarctic Peninsula region was dominated almost entirely by Gondwana sequences that together comprised a major arc-trench system. Subduction complex, trench-slope-break and fore-arc basin sedimentation can all be recognized, and deposition was at least partly on early Palaeozoic or older continental crust. The only evidence for a contemporaneous magmatic arc situated in the Antarctic Peninsula at this time consists of patchy occurrences of metavolcanic rocks, possibly representing the frontal edge of the arc, and the major outcrop area of these rocks is believed to lie under the broad shallow continental shelf E of the Antarctic Peninsula. This is contrary to most current hypotheses in which a marginal basin, presumably floored by oceanic crust, is thought to crop out close to the E coast of the Antarctic Peninsula. However, the complete absence of substantial outcrops of pre-Jurassic volcanic rocks anywhere in eastern Antarctica and South Africa, which are the closest and most likely places in which these should exist, supports the new proposal. Moreover, the identification of back-arc elements of the arc-trench system (foreland fold-thrust belt and retro-arc foreland basin) in eastern Antarctica and South Africa greatly strengthens the likelihood of the arc cropping out in the area suggested.Towards the end of the Triassic and during the Early Jurassic Periods, an intense diastrophic event, or culmination of events, of orogenic magnitude occurred (Gondwanian orogeny), causing substantial redistribution of the pre-existing elements of the arc-trench system. In particular, all the fore-arc sequences were strongly deformed, some possibly for the first time (e.g. in the fore-arc basin), and became firmly accreted to the continental margin. Moreover, the magmatic foci migrated trenchwards to intrude the deformed rocks in the Antarctic Peninsula. Because many of the plutons were emplaced synkinematically, they often closely resemble ‘basement’ gneisses. The distinction between these rocks remains a serious problem in the Antarctic Peninsula and it can be solved only partially by radiometric dating.


1997 ◽  
Vol 134 (4) ◽  
pp. 507-522 ◽  
Author(s):  
JOE J. MCCARRON ◽  
IAN L. MILLAR

Fore-arc magmatic sequences associated with high Mg number andesite lavas unconformably overlie LeMay Group accretionary complex in Alexander Island. High-resolution 40Ar/39Ar, U–Pb zircon, fission track and K–Ar ages demonstrate that subduction-related fore-arc magmatism migrated northwards along the length of Alexander Island between c. 80 Ma and c. 46 Ma. The magmatic rocks represent a third of the western margin of the Antarctic Peninsula magmatic arc and are critical to the understanding of the final phase of subduction along the southern Antarctic Peninsula margin. The onset of late Cretaceous magmatism is recorded by poorly exposed volcanic rocks on Monteverdi Peninsula (79.7±2.5 Ma). In central and northern Alexander Island, the magmatic rocks can be distinguished by the proportion, range and types of lithofacies present, and by the periods of magmatism represented. The volcanic rocks of the Colbert Mountains range in age from c. 69–62 Ma and are dominated by large volume dacitic and rhyolitic crystal-rich ignimbrites interpreted as caldera-fill deposits. Elgar Uplands sequences range in age from c. 55–50 Ma, and contain approximately equal proportions of pyroclastic deposits and less evolved (basaltic-andesite and andesite) lavas including high Mg number andesite lavas near the base of three sequences. The volcanic rocks of Finlandia Foothills probably represent the youngest calc-alkaline units on Alexander Island (48±2 Ma). The sequence is lithologically similar to the Elgar Uplands and also contains high Mg number andesite lavas, but it is dominated by polymict conglomerates, with minor lavas, which were deposited in a graben associated with regional extension. Plutonic rocks exposed in the Rouen Mountains, adjacent to the Elgar Uplands, yielded a U–Pb age of 56±3 Ma which is in discordance with a previously published Rb–Sr age (46±3 Ma), probably due to hydrothermal perturbation of the Rb–Sr system. Northwards migration of magmatism was caused by the progressive collision and subduction of three ridge segments prior to the previously reported ridge crest–trench collisions that occurred c. 20–30 Ma later and following which subduction ceased.


2010 ◽  
Vol 147 (4) ◽  
pp. 581-595 ◽  
Author(s):  
TEAL R. RILEY ◽  
MICHAEL J. FLOWERDEW ◽  
MORAG A. HUNTER ◽  
MARTIN J. WHITEHOUSE

AbstractSilicic volcanism atc.168 Ma has been identified previously on the Antarctic Peninsula, and the Mapple Formation, which includes those volcanic rocks, has been defined and documented from one area of the east coast of Graham Land. Based on age and geochemical criteria, correlations have been made to the extensive Chon Aike Province of South America, which has been demonstrated to be one of the largest silicic volcanic provinces in the world. Rhyolitic and intermediate composition volcanic successions from six separate localities on the east coast of the Antarctic Peninsula are described here and are confirmed as correlatives of the Mapple Formation, based on newly acquired geochronology and field observations. They are dominantly rhyolitic crystal tuffs and/or ignimbrites with ages in the interval 162–168 Ma, overlapping with the age of the Mapple Formation (167–171 Ma) at the type locality. Andesitic agglomerates are also described, which are included in the same event and demonstrate the occurrence of rare intermediate volcanism, which is also seen in the Chon Aike Province. A new group, the Graham Land Volcanic Group, is defined here, and criteria are established which allow the separation of some volcanic successions out of the previously defined Antarctic Peninsula Volcanic Group, which takes no account of tectonic setting, eruption age or geochemistry.


2018 ◽  
Vol 64 (3) ◽  
pp. 270-293
Author(s):  
G. V. Artemenko ◽  
V. I. Ganotskiy

The block of the Antarctic Peninsula is part of a magmatic arc formed along the southwestern part of the paleo-Pacific margin of the Gondwana supercontinent. Currently, subduction processes continue only in its northwestern part — in the region of the South Shetland islands, and to the southwest of it — there is a passive segment of the continental margin, within which the Argentine islands are located. Here, subduction was completed in the late Miocene-Early Pliocene. In the geological structure of the Argentine islands archipelago, the rocks of the Upper Jurassic volcanic group (AP Volcanic Group) and intrusive batholiths of the batholiths (AP batholiths) are distinguished. In them, there are numerous dikes of basic, medium and acidic compositions. The activation of dyke magmatism on the passive margin of the Antarctic Peninsula was probably connected with subduction processes in its northwestern part.The age sequence of dike formation in the rocks of the Antarctic Peninsula (AP) volcanic Group and intrusions of the gabbroids and granitoids of the Andean complex in the Argentine Islands and the near area of the Antarctic Peninsula is determined. The early dikes of the dacites in the volcanogenic stratum of the AP volcanic Group and the gabbrodiabases in the gabbroids of the Andean complex have a submeridional and northwestern strike. After the introduction of the granitoids of the Andean complex, dikes predominantly of the sublatitudinal and northeasterly strike are formed. The early dikes in the gabbroids of the Andean complex are Fe-Ti cumulates, and in granodiorite intrusions they are represented by aplites, probably formed from the residual magma of these intrusions. Later dikes were formed, probably due to the melting of the metasomatized mantle source at moderate depths under the influence of plumes. To their primitive (initial) melts, the composition of high-magnesian dike rocks is probably close. Products of deep mantle (plume) sources in the sample of selected samples were not detected. The dike rocks of this region according to their geochemical characteristics correspond to the mature island-arc formations of the calc-alkaline series.


1998 ◽  
Vol 27 ◽  
pp. 571-575 ◽  
Author(s):  
J. C. King ◽  
S. A. Harangozo

Temperature records from slations on the west roast of the Antarctic Peninsula show a very high level of interannual variability and, over the last 50 years, larger warming trends than are seen elsewhere in Antarctica. in this paper we investigate the role of atmospheric circulation variability and sea-ice extent variations in driving these changes. Owing to a lack of independent data, the reliability of Antarctic atmospheric analyses produced in the 1950s and 1960s cannot be readily established, but examination of the available data suggests that there has been an increase in the northerly component of the circulation over the Peninsula since the late 1950s. Few observations of sea-ice extent are available prior to 1973, but the limited data available indicate that the ice edge to the west of the Peninsula lay to the north of recently observed extremes during the very cold conditions prevailing in the late 1950s. The ultimate cause of the atmospheric-circulation changes remains to be determined and may lie outside the Antarctic region.


Sign in / Sign up

Export Citation Format

Share Document