Therapeutic and preventive properties of honey and its bioactive compounds in cancer: an evidence-based review

2019 ◽  
Vol 33 (1) ◽  
pp. 50-76 ◽  
Author(s):  
Sadia Afrin ◽  
Shoja M. Haneefa ◽  
Maria J. Fernandez-Cabezudo ◽  
Francesca Giampieri ◽  
Basel K. al-Ramadi ◽  
...  

AbstractDespite the much improved therapeutic approaches for cancer treatment that have been developed over the past 50 years, cancer remains a major cause of mortality globally. Considerable epidemiological and experimental evidence has demonstrated an association between ingestion of food and nutrients with either an increased risk for cancer or its prevention. There is rising interest in exploring agents derived from natural products for chemoprevention or for therapeutic purposes. Honey is rich in nutritional and non-nutritional bioactive compounds, as well as in natural antioxidants, and its potential beneficial function in human health is becoming more evident. A large number of studies have addressed the anti-cancer effects of different types of honey and their phenolic compounds using in vitro and in vivo cancer models. The reported findings affirm that honey is an agent able to modulate oxidative stress and has anti-proliferative, pro-apoptotic, anti-inflammatory, immune-modulatory and anti-metastatic properties. However, despite its reported anti-cancer activities, very few clinical studies have been undertaken. In the present review, we summarise the findings from different experimental approaches, including in vitro cell cultures, preclinical animal models and clinical studies, and provide an overview of the bioactive profile and bioavailability of the most commonly studied honey types, with special emphasis on the chemopreventive and therapeutic properties of honey and its major phenolic compounds in cancer. The implications of these findings as well as the future prospects of utilising honey to fight cancer will be discussed.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Medicines ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 17 ◽  
Author(s):  
Maryam Nakhjavani ◽  
Jennifer E Hardingham ◽  
Helen M Palethorpe ◽  
Yoko Tomita ◽  
Eric Smith ◽  
...  

Breast cancer is still one of the most prevalent cancers and a leading cause of cancer death worldwide. The key challenge with cancer treatment is the choice of the best therapeutic agents with the least possible toxicities on the patient. Recently, attention has been drawn to herbal compounds, in particular ginsenosides, extracted from the root of the Ginseng plant. In various studies, significant anti-cancer properties of ginsenosides have been reported in different cancers. The mode of action of ginsenoside Rg3 (Rg3) in in vitro and in vivo breast cancer models and its value as an anti-cancer treatment for breast cancer will be reviewed.


2021 ◽  
Author(s):  
Pedro Ferreira-Santos ◽  
Zlatina Genisheva ◽  
Claudia Botelho ◽  
Cristina Rocha ◽  
José António Teixeira

The significant increase in the world population age, 47 years in 1950 to 73 years in 2020, resulted in an increase in aging related diseases as well as in degenerative diseases. In consequence, researchers have been focusing in the development of new therapies, with a particular emphasis on the use of compounds with antioxidant properties, namely phytochemicals, such as polyphenols and carotenoids. Several in vitro and in vivo studies have demonstrated the phytochemicals antioxidant capacity. Their use is broad, as they can be part of food supplements, medicine and cosmetics. The health benefit of antioxidant phytochemicals is an indisputable question. Phytochemical properties are highly influenced by the natural matrix as well as by extraction process, which have a key role. There are several extraction methods that can be applied depending on the chemical properties of the bioactive compounds. There is a wide range of solvents with different polarities, which allows a selective extraction of the desired target family of compounds. Greener technologies have the advantage to reduce extraction time and solvent quantity in comparison to the most traditional methods. This chapter will focus on the different green extraction strategies related to the recovery of antioxidant bioactive compounds from natural sources, their nutritional and health potential.


2021 ◽  
Vol 11 (23) ◽  
pp. 11288
Author(s):  
Mohammad Al Mijan ◽  
Woo-Jin Sim ◽  
Tae-Gyu Lim

Green-colored foods, such as broccoli, sprouts, soybean, and green leafy vegetables are considered one of the representative healthy foods for containing various functional ingredients that can combat chronic diseases, including diabetes, obesity, and cancer. Herein, we reviewed the anti-cancer activities and the underlying mechanisms of some important bioactive compounds, such as sulforaphane, catechins, chlorophyll, isoflavone, indole dervatives, and lutein, present in green-colored foods. In vivo and clinical studies suggest that sulforaphane, a sulfur-containing compound found in cruciferous vegetables, can ameliorate prostate and breast cancer symptoms by arresting cell-cycle progression and modulating Ki67 and HDAC expression. A green tea compound, known as epigallocatechin-3-gallate (EGCG), has shown remarkable anti-cancer effects against prostate cancer and lung adenocarcinoma in human trials through its antioxidative defense and immunomodulatory functions. Chlorophyll, a natural pigment found in all green plants, can regulate multiple cancer-related genes, including cyclin D1, CYP1A, CYP1B1, and p53. Epidemiological studies indicate that chlorophyll can substantially reduce aflatoxin level and can mitigate colon cancer in human subjects. Remarkably, the consumption of soy isoflavone has been found to be associated with the lower incidence and mortality of breast and prostate cancers in East Asia and in Canada. In vivo and in vitro data point out that isoflavone has modulatory effects on estrogen and androgen signaling pathways and the expression of MAPK, NfκB, Bcl-2, and PI3K/AKT in different cancer models. Other green food bioactive compounds, such as indole derivatives and lutein, also exhibited suppressing effects in rodent models of lung, liver, stomach, cervical, and prostate cancers. In addition, some micronutrients, such as folate, riboflavin, retinoic acid, and vitamin D3 present in green foods, also showed potential cancer suppressing effects. Taken together, these data suggest potential chemopreventive functions of the bioactive compounds from green-colored foods. This paper could be beneficial for further research on the anti-carcinogenic effects of green-colored food-derived compounds, in order to develop green chemotherapeutics for cancers.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3934
Author(s):  
Anca Fărcaș ◽  
Georgiana Drețcanu ◽  
Teodora Daria Pop ◽  
Bianca Enaru ◽  
Sonia Socaci ◽  
...  

In today’s society, we can see a progressive paradigm shift that tends towards a healthy and sustainable lifestyle. The proof is represented by the growing interest in food loss and waste of different sectors, from the political to the academic, or even to the private sector. In order to reduce food waste and to increase sustainability, the European Union (EU) has planned a circular bioeconomy. This action plan includes an approach based on reducing, reusing, recovering, and recycling materials and energy. Every year, there are high amounts of waste and by-products resulting from agricultural producing and agro-industrial processing, impacting the environment and the socio-economic sector. Cereal food products cover over 20% of daily diet, so it can be assumed that cereal production and processing are one of the most important sectors of agri-food industries. It is estimated that the waste generated from cereal processing and manufacturing is up to 13%, a percentage that can be decreased by converting the by-products in raw materials for biofuels, biodegradable plastics, alcohols, antioxidants, food additives, or pharmaceutic ingredients due to their content in macro- and micro-nutrients or bioactive compounds. Based on the fact that diet plays a crucial role in maintaining the integrity of our body, it is important to capitalize on any source of bioactive compounds to which we have access. This review aims to highlight the need to recirculate by-products for the purpose of extraction and use of their key compounds, polyphenols, which have not only antioxidant effects, but also preventive and therapeutic effects against cancer. For these, it is necessary to understand the biotechnologies needed for processing the most consumed cereals, the methods of extraction of phenolic compounds, and the main effects that these compounds have, summarizing the most relevant in vitro and in vivo studies performed so far.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2868
Author(s):  
Zhenhua Li ◽  
Xiaoyan Zhao ◽  
Xiaowei Zhang ◽  
Hongkai Liu

Sorghum is the fifth most commonly used cereal worldwide and is a rich source of many bioactive compounds. We summarized phenolic compounds and carotenoids, vitamin E, amines, and phytosterols in sorghum grains. Recently, with the development of detection technology, new bioactive compounds such as formononetin, glycitein, and ononin have been detected. In addition, multiple in vitro and in vivo studies have shown that sorghum grains have extensive bio-logical activities, such as antioxidative, anticancer, antidiabetic, antiinflammatory, and antiobesity properties. Finally, with the establishment of sorghum phenolic compounds database, the bound phenolics and their biological activities and the mechanisms of biological activities of sorghum bioactive compounds using clinical trials may be researched.


Author(s):  
Qudus Hamid ◽  
Chengyang Wang ◽  
Wei Sun

Micro-Electro-Mechanical Systems (MEMS) technologies have been very attractive and demonstrate the potential for many applications in the field of tissue engineering, regenerative medicine, and life sciences. These fields bring together the multidisciplinary field of engineering and integrated sciences to fabricate three-dimensional models that aides the exploration, generation or regeneration of organic tissues and organs. Presently, monolayer cell cultures are frequently used to investigate potential anti-cancer agents. The issues at hand are that these models give very little in terms of feedback on the effects of the microenvironment on chemotherapeutic and the heterogeneity of the tumor. Three-dimensional tumor and cancer models that mimic the actual disease are developed for in vitro investigations. These models create an environment that enables diseases to have an enhanced evaluation (compared to two dimensional) and eliminate the limitations of the traditional mainstays of cancer research. Three-dimensional Cancer models are economic, allow for biological characterizations. Cancer models are developed from investigations of the actual disease; computer tomography (CT) and magnetic resonance imaging (MRI) allow for biomodeling of the disease’s environmental conditions. Unlike many traditional microfabrication techniques, the Digitial Micro-mirror Microfabrication (DMM) System eliminates the need for mask by incorporating a dynamic mask-less fabrication technique. The DMM is specifically designed for the developments of biologically inspired devices, whether it’s a multicellular spheroid, hollow fiber, or multicellular layer (MCL) models; the DMM has the potential to utilize its dynamic micro mirrors to build the tissue model according to its desired design and characteristics. Each model is specifically designed to mimic the in vivo conditions of the tissue of interest.


2014 ◽  
Author(s):  
Raul M Luque ◽  
Mario Duran-Prado ◽  
David Rincon-Fernandez ◽  
Marta Hergueta-Redondo ◽  
Michael D Culler ◽  
...  

Author(s):  
V. Ramadas ◽  
G. Chandralega

Sponges, exclusively are aquatic and mostly marine, are found from the deepest oceans to the edge of the sea. There are approximately 15,000 species of sponges in the world, of which, 150 occur in freshwater, but only about 17 are of commercial value. A total of 486 species of sponges have been identified in India. In the Gulf of Mannar and Palk Bay a maximum of 319 species of sponges have been recorded. It has been proved that marine organisms are excellent source of bioactive secondary metabolites and number of compounds of originated from marine organisms had been reported to possess in-vitro and in-vivo immuno stimulatory activity. Extracts from 20 sponge species were tested for bacterial symbionts and bioactive compounds were isolated from such associated bacterial species in the present study.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Sign in / Sign up

Export Citation Format

Share Document