The impact of pragmatic markers and hedging on sentence comprehension: a case study ofcommeandgenre

2016 ◽  
Vol 27 (3) ◽  
pp. 355-380
Author(s):  
INGA HENNECKE

ABSTRACTCurrent research on conceptual and semantic representations is mainly based on prototypical word classes, such as nouns and verbs. Hence, most models of language processing and language representation rely on experimental investigations on these word classes. Until today, only a few psycholinguistic studies centre on the processing of pragmatic markers and hedges and their effect on speech comprehension. The present article aims to give experimental evidence for the processing of semantic meaning patterns and pragmatic functions of pragmatic markers. The focus will be on the question, if pragmatic markers and hedges play a role in sentence processing. This main problem will be illustrated and discussed by means of experimental data. In a monolingual sentence verification task with lexical decision, the meaning patterns and functions of the partially equivalent pragmatic French markerscommeandgenreare investigated in Canadian and European French. The results of the sentence word verification task provide evidence for an impact of pragmatic functions and semantic meaning patterns of pragmatic markers on sentence processing.

Author(s):  
Fernanda Ferreira ◽  
James Nye

Today, the modular view of sentence processing is unpopular, but the arguments against modularity are not as strong as this apparent consensus would suggest. Almost all experimental investigations of modularity have focused on properties pertaining to information encapsulation, and most of those studies have evaluated just one specific modular architecture. A review of these studies of sentence comprehension suggests that the evidence against information encapsulation is really evidence against that one architecture only, and a whole range of other possible modular architectures remain untested. Although psycholinguistic work has largely ignored the modularity claims relating to shallow outputs, new findings from studies to test “good enough” language processing suggest that the output of the language processing module can be characterized as shallow or minimal. Perhaps, then, the modularity hypothesis was prematurely rejected. Evidence for shallow outputs provides intriguing new support for the idea that sentence processing is indeed modular.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 446
Author(s):  
Yair Lakretz ◽  
Stanislas Dehaene ◽  
Jean-Rémi King

Sentence comprehension requires inferring, from a sequence of words, the structure of syntactic relationships that bind these words into a semantic representation. Our limited ability to build some specific syntactic structures, such as nested center-embedded clauses (e.g., “The dog that the cat that the mouse bit chased ran away”), suggests a striking capacity limitation of sentence processing, and thus offers a window to understand how the human brain processes sentences. Here, we review the main hypotheses proposed in psycholinguistics to explain such capacity limitation. We then introduce an alternative approach, derived from our recent work on artificial neural networks optimized for language modeling, and predict that capacity limitation derives from the emergence of sparse and feature-specific syntactic units. Unlike psycholinguistic theories, our neural network-based framework provides precise capacity-limit predictions without making any a priori assumptions about the form of the grammar or parser. Finally, we discuss how our framework may clarify the mechanistic underpinning of language processing and its limitations in the human brain.


2009 ◽  
Vol 21 (12) ◽  
pp. 2434-2444 ◽  
Author(s):  
David January ◽  
John C. Trueswell ◽  
Sharon L. Thompson-Schill

For over a century, a link between left prefrontal cortex and language processing has been accepted, yet the precise characterization of this link remains elusive. Recent advances in both the study of sentence processing and the neuroscientific study of frontal lobe function suggest an intriguing possibility: The demands to resolve competition between incompatible characterizations of a linguistic stimulus may recruit top–down cognitive control processes mediated by prefrontal cortex. We use functional magnetic resonance imaging to test the hypothesis that individuals use shared prefrontal neural circuitry during two very different tasks—color identification under Stroop conflict and sentence comprehension under conditions of syntactic ambiguity—both of which putatively rely on cognitive control processes. We report the first demonstration of within-subject overlap in neural responses to syntactic and nonsyntactic conflict. These findings serve to clarify the role of Broca's area in, and the neural and psychological organization of, the language processing system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Veena D. Dwivedi ◽  
Janahan Selvanayagam

We examined whether the N400 Event-Related Potential (ERP) component would be modulated by dispositional affect during sentence processing. In this study, 33 participants read sentences manipulated by direct object type (congruent vs. incongruent) and object determiner type (definite vs. demonstrative). We were particularly interested in sentences of the form: (i) The connoisseur tasted thewineon the tour vs. (ii) The connoisseur tasted the #roof… We expected that processing incongruent direct objects (#roof) vs. congruent objects (wine) would elicit N400 effects. Previous ERP language experiments have shown that participants in (induced) positive and negative moods were differentially sensitive to semantic anomaly, resulting in different N400 effects. Presently, we ask whether individual dispositional affect scores (as measured by the Positive and Negative Affect Schedule; PANAS) would modulate N400 effects as shown previously. Namely, previous results showed larger N400 effects associated with happy moods and attenuated amplitudes associated with sad moods. Results revealed significant N400 effects, driven by the #roof vs. the wine, where larger amplitude differences were found for individuals showing smaller negative affect (NA) scores, thus partially replicating previous findings. We discuss our results in terms of theories of local (lexical) inhibition, such that low NA promotes stronger lexico-semantic links in sentences. Finally, our results support accounts of language processing that include social and biological characteristics of individuals during real-time sentence comprehension.


2016 ◽  
Vol 59 (4) ◽  
pp. 759-771 ◽  
Author(s):  
Sarah E. Key-DeLyria

PurposeSentence processing can be affected following a traumatic brain injury (TBI) due to linguistic or cognitive deficits. Language-related event-related potentials (ERPs), particularly the P600, have not been described in individuals with TBI history.MethodFour young adults with a history of closed head injury participated. Two had severe injuries, and 2 had mild–moderate injuries more than 24 months prior to testing. ERPs were recorded while participants read sentences designed to be grammatically correct or incorrect. Participants also completed cognitive and sentence comprehension measures.ResultsOne participant with TBI was significantly different than the control group on several behavioral sentence measures and 1 cognitive measure. However, none of the participants with TBI had a reliable P600 effect. Nonparametric bootstrapping indicated that the ERP was reliable in 10 control participants but no participants with TBI history.ConclusionsThere were few behavioral differences between individuals with TBI history and the control group, though all reported subjective difficulty with reading. The P600 was absent in the TBI group in this study. Given the heterogeneity of individuals with TBI and the difficulty in assessing subtle language impairments, exploring the P600 further may provide useful insight into language processing difficulties.


1988 ◽  
Vol 15 (3) ◽  
pp. 637-662 ◽  
Author(s):  
Michèle Kail ◽  
Agnès Charvillat

ABSTRACTThis cross-linguistic study investigates the relative importance of validity in terms of the strengths of syntactic cues and cue processing cost in sentence comprehension by French and Spanish children (4; 6–6; 6). The notion of cue cost refers to the distinction between local and topological processing types. Choices of the agent (cue strength) and latencies (cue cost) were collected through the acting out of sentences containing different syntactic cues. These cues (word order, clitic pronoun, verbal agreement plus accusative preposition a in Spanish) are ordered on a continuum from the most topological (word order) to the most local (preposition a). The analysis of cue strengths reveals that, while for French children a linguistic cue is all the stronger the more topological it is (verbal agreement < clitic pronoun < word order), for Spanish children a cue is all the stronger the more local it is (word order < clitic pronoun < verbal agreement < preposition a). The fact that Spanish children's latencies are always shorter (2150 msec) than those of French children (3110 msec) must be related to the effect of the preposition a which permits efficient role assignments with minimal cost. These results stress the importance of locality in sentence processing. On the other hand, a comparison with our similar adult cross-linguistic data demonstrates that the impact of cue cost changes over time.


2019 ◽  
Author(s):  
Cory Shain ◽  
Idan Asher Blank ◽  
Marten van Schijndel ◽  
William Schuler ◽  
Evelina Fedorenko

AbstractMuch research in cognitive neuroscience supports prediction as a canonical computation of cognition across domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it locally implemented in domain-specific circuits? What information sources are used to generate these predictions? This study addresses these two questions in the context of language processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive coding in the brain’s response to language is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the domain-general multiple-demand network, which supports executive control processes and has been previously implicated in language comprehension. Moreover, within the language network, surface-level and structural prediction effects were separable. The predictability effects in the language network were substantial, with the model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive to hierarchical structure and specialized for language processing, rather than via feedback from high-level executive control mechanisms.


2021 ◽  
Author(s):  
Nina Zdorova ◽  
Svetlana Malyutina ◽  
Anna Laurinavichyute ◽  
Anastasiia Kaprielova ◽  
Kromina Anastasia ◽  
...  

Noise, as part of real-life communication flow, degrades the quality of linguistic input and affects language processing. According to predictions of the noisy-channel model, noisemakes comprehenders rely more on word-level semantics and good-enough processing instead of actual syntactic relations. However, empirical evidence of such qualitative effect of noise on sentence processing is still lacking. For the first time, we investigated the qualitative effect of both auditory (three-talker babble) and visual (short idioms appearing next to target sentence on the screen) noise on sentence reading within one study in two eye-trackingexperiments. In both of them, we used the same stimuli — unambiguous grammatical Russian sentences — and manipulated their semantic plausibility. Our findings suggest that although readers relied on good-enough processing in Russian, neither auditory nor visualnoise qualitatively increased reliance on semantics in sentence comprehension. The only effect of noise was found in reading speed: only without noise, semantically implausible sentences were read slower than semantically plausible ones, as measured by both early and late eye-movement measures. These results do not support the predictions of the noisy-channel model. With regard to quantitative effects, we found a detrimental effect ofauditory noise on overall comprehension accuracy, and an accelerating effect of visual noise on sentence processing without accuracy decrease.


2021 ◽  
pp. 1-20
Author(s):  
Eleonora J. Beier ◽  
Suphasiree Chantavarin ◽  
Gwendolyn Rehrig ◽  
Fernanda Ferreira ◽  
Lee M. Miller

In recent years, a growing number of studies have used cortical tracking methods to investigate auditory language processing. Although most studies that employ cortical tracking stem from the field of auditory signal processing, this approach should also be of interest to psycholinguistics—particularly the subfield of sentence processing—given its potential to provide insight into dynamic language comprehension processes. However, there has been limited collaboration between these fields, which we suggest is partly because of differences in theoretical background and methodological constraints, some mutually exclusive. In this paper, we first review the theories and methodological constraints that have historically been prioritized in each field and provide concrete examples of how some of these constraints may be reconciled. We then elaborate on how further collaboration between the two fields could be mutually beneficial. Specifically, we argue that the use of cortical tracking methods may help resolve long-standing debates in the field of sentence processing that commonly used behavioral and neural measures (e.g., ERPs) have failed to adjudicate. Similarly, signal processing researchers who use cortical tracking may be able to reduce noise in the neural data and broaden the impact of their results by controlling for linguistic features of their stimuli and by using simple comprehension tasks. Overall, we argue that a balance between the methodological constraints of the two fields will lead to an overall improved understanding of language processing as well as greater clarity on what mechanisms cortical tracking of speech reflects. Increased collaboration will help resolve debates in both fields and will lead to new and exciting avenues for research.


2019 ◽  
Vol 62 (2) ◽  
pp. 367-386 ◽  
Author(s):  
Amy Kemp ◽  
David Eddins ◽  
Rahul Shrivastav ◽  
Amanda Hampton Wray

Purpose Improving the ability to listen efficiently in noisy environments is a critical goal for hearing rehabilitation. However, understanding of the impact of difficult listening conditions on language processing is limited. The current study evaluated the neural processes underlying semantics in challenging listening conditions. Method Thirty adults with normal hearing completed an auditory sentence processing task in 4-talker babble. Event-related brain potentials were elicited by the final word in high- or low-context sentences, where the final word was either highly expected or not expected, followed by a 4-alternative forced-choice response with either longer (1,000 ms), middle (700 ms), or shorter (400 ms) response time deadlines (RTDs). Results Behavioral accuracy was reduced, and reactions times were faster for shorter RTDs. N400 amplitudes, reflecting ease of lexical access, were larger when elicited by target words in low-context sentences followed by shorter compared with longer RTDs. Conclusions These results reveal that more neural resources are allocated for semantic processing/lexical access when listening difficulty increases. Differences between RTDs may reflect increased attentional allocation for shorter RTDs. These findings suggest that situational listening demands can impact the demands for cognitive resources engaged in language processing, which could significantly impact listener experiences across environments.


Sign in / Sign up

Export Citation Format

Share Document