The Modularity of Sentence Processing Reconsidered

Author(s):  
Fernanda Ferreira ◽  
James Nye

Today, the modular view of sentence processing is unpopular, but the arguments against modularity are not as strong as this apparent consensus would suggest. Almost all experimental investigations of modularity have focused on properties pertaining to information encapsulation, and most of those studies have evaluated just one specific modular architecture. A review of these studies of sentence comprehension suggests that the evidence against information encapsulation is really evidence against that one architecture only, and a whole range of other possible modular architectures remain untested. Although psycholinguistic work has largely ignored the modularity claims relating to shallow outputs, new findings from studies to test “good enough” language processing suggest that the output of the language processing module can be characterized as shallow or minimal. Perhaps, then, the modularity hypothesis was prematurely rejected. Evidence for shallow outputs provides intriguing new support for the idea that sentence processing is indeed modular.

2016 ◽  
Vol 27 (3) ◽  
pp. 355-380
Author(s):  
INGA HENNECKE

ABSTRACTCurrent research on conceptual and semantic representations is mainly based on prototypical word classes, such as nouns and verbs. Hence, most models of language processing and language representation rely on experimental investigations on these word classes. Until today, only a few psycholinguistic studies centre on the processing of pragmatic markers and hedges and their effect on speech comprehension. The present article aims to give experimental evidence for the processing of semantic meaning patterns and pragmatic functions of pragmatic markers. The focus will be on the question, if pragmatic markers and hedges play a role in sentence processing. This main problem will be illustrated and discussed by means of experimental data. In a monolingual sentence verification task with lexical decision, the meaning patterns and functions of the partially equivalent pragmatic French markerscommeandgenreare investigated in Canadian and European French. The results of the sentence word verification task provide evidence for an impact of pragmatic functions and semantic meaning patterns of pragmatic markers on sentence processing.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 446
Author(s):  
Yair Lakretz ◽  
Stanislas Dehaene ◽  
Jean-Rémi King

Sentence comprehension requires inferring, from a sequence of words, the structure of syntactic relationships that bind these words into a semantic representation. Our limited ability to build some specific syntactic structures, such as nested center-embedded clauses (e.g., “The dog that the cat that the mouse bit chased ran away”), suggests a striking capacity limitation of sentence processing, and thus offers a window to understand how the human brain processes sentences. Here, we review the main hypotheses proposed in psycholinguistics to explain such capacity limitation. We then introduce an alternative approach, derived from our recent work on artificial neural networks optimized for language modeling, and predict that capacity limitation derives from the emergence of sparse and feature-specific syntactic units. Unlike psycholinguistic theories, our neural network-based framework provides precise capacity-limit predictions without making any a priori assumptions about the form of the grammar or parser. Finally, we discuss how our framework may clarify the mechanistic underpinning of language processing and its limitations in the human brain.


2009 ◽  
Vol 21 (12) ◽  
pp. 2434-2444 ◽  
Author(s):  
David January ◽  
John C. Trueswell ◽  
Sharon L. Thompson-Schill

For over a century, a link between left prefrontal cortex and language processing has been accepted, yet the precise characterization of this link remains elusive. Recent advances in both the study of sentence processing and the neuroscientific study of frontal lobe function suggest an intriguing possibility: The demands to resolve competition between incompatible characterizations of a linguistic stimulus may recruit top–down cognitive control processes mediated by prefrontal cortex. We use functional magnetic resonance imaging to test the hypothesis that individuals use shared prefrontal neural circuitry during two very different tasks—color identification under Stroop conflict and sentence comprehension under conditions of syntactic ambiguity—both of which putatively rely on cognitive control processes. We report the first demonstration of within-subject overlap in neural responses to syntactic and nonsyntactic conflict. These findings serve to clarify the role of Broca's area in, and the neural and psychological organization of, the language processing system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Veena D. Dwivedi ◽  
Janahan Selvanayagam

We examined whether the N400 Event-Related Potential (ERP) component would be modulated by dispositional affect during sentence processing. In this study, 33 participants read sentences manipulated by direct object type (congruent vs. incongruent) and object determiner type (definite vs. demonstrative). We were particularly interested in sentences of the form: (i) The connoisseur tasted thewineon the tour vs. (ii) The connoisseur tasted the #roof… We expected that processing incongruent direct objects (#roof) vs. congruent objects (wine) would elicit N400 effects. Previous ERP language experiments have shown that participants in (induced) positive and negative moods were differentially sensitive to semantic anomaly, resulting in different N400 effects. Presently, we ask whether individual dispositional affect scores (as measured by the Positive and Negative Affect Schedule; PANAS) would modulate N400 effects as shown previously. Namely, previous results showed larger N400 effects associated with happy moods and attenuated amplitudes associated with sad moods. Results revealed significant N400 effects, driven by the #roof vs. the wine, where larger amplitude differences were found for individuals showing smaller negative affect (NA) scores, thus partially replicating previous findings. We discuss our results in terms of theories of local (lexical) inhibition, such that low NA promotes stronger lexico-semantic links in sentences. Finally, our results support accounts of language processing that include social and biological characteristics of individuals during real-time sentence comprehension.


2016 ◽  
Vol 59 (4) ◽  
pp. 759-771 ◽  
Author(s):  
Sarah E. Key-DeLyria

PurposeSentence processing can be affected following a traumatic brain injury (TBI) due to linguistic or cognitive deficits. Language-related event-related potentials (ERPs), particularly the P600, have not been described in individuals with TBI history.MethodFour young adults with a history of closed head injury participated. Two had severe injuries, and 2 had mild–moderate injuries more than 24 months prior to testing. ERPs were recorded while participants read sentences designed to be grammatically correct or incorrect. Participants also completed cognitive and sentence comprehension measures.ResultsOne participant with TBI was significantly different than the control group on several behavioral sentence measures and 1 cognitive measure. However, none of the participants with TBI had a reliable P600 effect. Nonparametric bootstrapping indicated that the ERP was reliable in 10 control participants but no participants with TBI history.ConclusionsThere were few behavioral differences between individuals with TBI history and the control group, though all reported subjective difficulty with reading. The P600 was absent in the TBI group in this study. Given the heterogeneity of individuals with TBI and the difficulty in assessing subtle language impairments, exploring the P600 further may provide useful insight into language processing difficulties.


2019 ◽  
Author(s):  
Cory Shain ◽  
Idan Asher Blank ◽  
Marten van Schijndel ◽  
William Schuler ◽  
Evelina Fedorenko

AbstractMuch research in cognitive neuroscience supports prediction as a canonical computation of cognition across domains. Is such predictive coding implemented by feedback from higher-order domain-general circuits, or is it locally implemented in domain-specific circuits? What information sources are used to generate these predictions? This study addresses these two questions in the context of language processing. We present fMRI evidence from a naturalistic comprehension paradigm (1) that predictive coding in the brain’s response to language is domain-specific, and (2) that these predictions are sensitive both to local word co-occurrence patterns and to hierarchical structure. Using a recently developed continuous-time deconvolutional regression technique that supports data-driven hemodynamic response function discovery from continuous BOLD signal fluctuations in response to naturalistic stimuli, we found effects of prediction measures in the language network but not in the domain-general multiple-demand network, which supports executive control processes and has been previously implicated in language comprehension. Moreover, within the language network, surface-level and structural prediction effects were separable. The predictability effects in the language network were substantial, with the model capturing over 37% of explainable variance on held-out data. These findings indicate that human sentence processing mechanisms generate predictions about upcoming words using cognitive processes that are sensitive to hierarchical structure and specialized for language processing, rather than via feedback from high-level executive control mechanisms.


2021 ◽  
Author(s):  
Nina Zdorova ◽  
Svetlana Malyutina ◽  
Anna Laurinavichyute ◽  
Anastasiia Kaprielova ◽  
Kromina Anastasia ◽  
...  

Noise, as part of real-life communication flow, degrades the quality of linguistic input and affects language processing. According to predictions of the noisy-channel model, noisemakes comprehenders rely more on word-level semantics and good-enough processing instead of actual syntactic relations. However, empirical evidence of such qualitative effect of noise on sentence processing is still lacking. For the first time, we investigated the qualitative effect of both auditory (three-talker babble) and visual (short idioms appearing next to target sentence on the screen) noise on sentence reading within one study in two eye-trackingexperiments. In both of them, we used the same stimuli — unambiguous grammatical Russian sentences — and manipulated their semantic plausibility. Our findings suggest that although readers relied on good-enough processing in Russian, neither auditory nor visualnoise qualitatively increased reliance on semantics in sentence comprehension. The only effect of noise was found in reading speed: only without noise, semantically implausible sentences were read slower than semantically plausible ones, as measured by both early and late eye-movement measures. These results do not support the predictions of the noisy-channel model. With regard to quantitative effects, we found a detrimental effect ofauditory noise on overall comprehension accuracy, and an accelerating effect of visual noise on sentence processing without accuracy decrease.


Author(s):  
Randi C. Martin ◽  
Loan C. Vuong ◽  
Jason E. Crowther

Studies in the 1970s and early 1980s demonstrated impaired sentence comprehension in conjunction with good single word comprehension in some aphasic patients. These findings generated a great deal of excitement among aphasiologists and psycholinguists because they seemed to provide support for linguistic theories that hypothesised a system of rules for specifying grammatical well-formedness which was independent of semantics. A number of findings quickly followed these initial findings which caused problems for interpreting the patient data in terms of a deficit to an independent syntactic processing module. The complications that surfaced have given rise to heated debates concerning the proper interpretation of sentence comprehension deficits—mirroring to some extent the debates in linguistics on generative vs. non-generative grammar and in psycholinguistics on syntax-first vs. constraint-based sentence processing theories. This article summarizes results from case studies on language deficits associated with aphasia. It also reviews the evidence regarding the complementary claim that syntactic comprehension deficits in patients without obvious syntactic difficulties in production could be attributed to a short-term memory deficit.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sharon Geva ◽  
Letitia M. Schneider ◽  
Sophie Roberts ◽  
David W. Green ◽  
Cathy J. Price

Functional imaging studies of neurologically intact adults have demonstrated that the right posterior cerebellum is activated during verb generation, semantic processing, sentence processing, and verbal fluency. Studies of patients with cerebellar damage converge to show that the cerebellum supports sentence processing and verbal fluency. However, to date there are no patient studies that investigated the specific importance of the right posterior cerebellum in language processing, because: (i) case studies presented patients with lesions affecting the anterior cerebellum (with or without damage to the posterior cerebellum), and (ii) group studies combined patients with lesions to different cerebellar regions, without specifically reporting the effects of right posterior cerebellar damage. Here we investigated whether damage to the right posterior cerebellum is critical for sentence processing and verbal fluency in four patients with focal stroke damage to different parts of the right posterior cerebellum (all involving Crus II, and lobules VII and VIII). We examined detailed lesion location by going beyond common anatomical definitions of cerebellar anatomy (i.e., according to lobules or vascular territory), and employed a recently proposed functional parcellation of the cerebellum. All four patients experienced language difficulties that persisted for at least a month after stroke but three performed in the normal range within a year. In contrast, one patient with more damage to lobule IX than the other patients had profound long-lasting impairments in the comprehension and repetition of sentences, and the production of spoken sentences during picture description. Spoken and written word comprehension and visual recognition memory were also impaired, however, verbal fluency was within the normal range, together with object naming, visual perception and verbal short-term memory. This is the first study to show that focal damage to the right posterior cerebellum leads to language difficulties after stroke; and that processing impairments persisted in the case with most damage to lobule IX. We discuss these results in relation to current theories of cerebellar contribution to language processing. Overall, our study highlights the need for longitudinal studies of language function in patients with focal damage to different cerebellar regions, with functional imaging to understand the mechanisms that support recovery.


Author(s):  
Merrill F. Garrett

Psycholinguistic studies of language processing have revolved historically around “modular” and “interactive” accounts of language use. Experimental reports diverge in claims for the penetration of non-linguistic background information on processing for sentence comprehension. Syntactic processing effects can persist despite available contextual constraints that are sufficient to resolve temporary ambiguity or garden path errors. Nevertheless, there are multiple reports of interactive effects between basic sentence processing and both semantic and non-linguistic contextual information. The chapter suggests a rationalization of such conflicting findings in standard psycholinguistic and experimental pragmatic research, relying on interactions between language comprehension systems and language production systems. Production processes are designed to incorporate discourse and environmental constraints on linguistic formulation. These may be used to filter the products of comprehension mechanisms. A key feature of the argument for complementary roles of the two systems is a degree of modular processing for syntax to be found in both systems.


Sign in / Sign up

Export Citation Format

Share Document