Could introducing confiscated parrots to zoological collections jeopardise conservation breeding programmes?

2017 ◽  
Vol 28 (3) ◽  
pp. 493-498 ◽  
Author(s):  
JULIA STAGEGAARD ◽  
SIMON BRUSLUND ◽  
MICHAEL LIERZ

SummaryConfiscated parrots are frequently introduced to captive populations in zoological institutions, regularly with insufficient health screening. This short communication describes a case where 25 confiscated parrots, from four different locations, were brought to the same zoological institution within two years, where they were kept under quarantine conditions. A year after the last birds arrived, several birds died due to either proventricular dilatation disease or herpesvirus infection. As all individuals belonged to rare species, the surviving birds were transferred to the Justus-Liebig-University in Giessen, Germany, for thorough diagnostics including parrot bornavirus, psittacine herpesvirus 1, adenovirus, polyomavirus, circovirus, Chlamydia psittaci, and mycobacteria. Birds that tested negative for all pathogens were transferred to captive breeding programmes, whereas pathogen carriers were paired up in collections of a similar pathogen status. This case report highlights the dangers of latent infections with different pathogens and the importance of managed screening programmes if such populations are to be considered for conservation.

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12212
Author(s):  
Deepanwita Purohit ◽  
Shivakumara Manu ◽  
Muthuvarmadam Subramanian Ram ◽  
Shradha Sharma ◽  
Harika Chinchilam Patnaik ◽  
...  

Long-term captive populations often accumulate genetic changes that are detrimental to their survival in the wild. Periodic genetic evaluation of captive populations is thus necessary to identify deleterious changes and minimize their impact through planned breeding. Pygmy hog (Porcula salvania) is an endangered species with a small population inhabiting the tall sub-Himalayan grasslands of Assam, India. A conservation breeding program of pygmy hog from six founders has produced a multi-generational captive population destined for reintroduction into the wild. However, the impact of conservation breeding on its genetic diversity remained undocumented. Here, we evaluate temporal genetic changes in 39 pygmy hogs from eight consecutive generations of a captive population using genome-wide SNPs, mitochondrial genomes, and MHC sequences, and explore the relationship between genetic diversity and reproductive success. We find that pygmy hog harbors a very low genome-wide heterozygosity (H) compared to other members of the Suidae family. However, within the captive population we find excess heterozygosity and a significant increase in H from the wild-caught founders to the individuals in subsequent generations due to the selective pairing strategy. The MHC and mitochondrial nucleotide diversities were lower in captive generations compared to the founders with a high prevalence of low-frequency MHC haplotypes and more unique mitochondrial genomes. Further, even though no signs of genetic inbreeding were observed from the estimates of individual inbreeding coefficient F and between individuals (FIS) in each generation, the kinship coefficient showed a slightly increasing trend in the recent generations, due to a relatively smaller non-random sample size compared to the entire captive population. Surprisingly, male pygmy hogs that had higher heterozygosity also showed lower breeding success. We briefly discuss the implications of our findings in the context of breeding management and recommend steps to minimize the genetic effects of long-term captive breeding.


2021 ◽  
pp. 119-136
Author(s):  
Paul A. Rees

Abstract This chapter contains questions on the role of zoos in conservation (captive) breeding programmes and the technologies that have been developed to assist in the reproduction of rare species.


2021 ◽  
pp. 24-27
Author(s):  
Jay Redbond

The Nguru spiny pygmy chameleon (Rhampholeon acuminatus) is endemic to the Nguru mountains in Tanzania. It is assessed as Critically Endangered and is collected from the wild for the pet trade. An ex-situ population of this species was recently established at The Wild Planet Trust, Paignton Zoo, in the hope of learning more about the husbandry and biology of this species. We report on the captive husbandry of adults and the successful breeding, hatching and rearing of juveniles. Females carried four eggs but laid them in pairs. When eggs were incubated at 19.2-22.8 °C, hatchlings emerged roughly 180 days after laying. The hatchlings had a total length of about 30 mm and weighed 0.2-0.3 g. To our knowledge, this is the first published account of captive breeding for this species. The husbandry methods described could be used to establish populations of this and other Rhampholeon species in captivity, which in turn would reduce the demand for wild caught (Rhampholeon), as well as inform future conservation breeding programmes for this species.


2018 ◽  
Vol 5 (5) ◽  
pp. 172470 ◽  
Author(s):  
Stephanie K. Courtney Jones ◽  
Adam J. Munn ◽  
Phillip G. Byrne

Captive breeding programmes are increasingly relied upon for threatened species management. Changes in morphology can occur in captivity, often with unknown consequences for reintroductions. Few studies have examined the morphological changes that occur in captive animals compared with wild animals. Further, the effect of multiple generations being maintained in captivity, and the potential effects of captivity on sexual dimorphism remain poorly understood. We compared external and internal morphology of captive and wild animals using house mouse ( Mus musculus ) as a model species. In addition, we looked at morphology across two captive generations, and compared morphology between sexes. We found no statistically significant differences in external morphology, but after one generation in captivity there was evidence for a shift in the internal morphology of captive-reared mice; captive-reared mice (two generations bred) had lighter combined kidney and spleen masses compared with wild-caught mice. Sexual dimorphism was maintained in captivity. Our findings demonstrate that captive breeding can alter internal morphology. Given that these morphological changes may impact organismal functioning and viability following release, further investigation is warranted. If the morphological change is shown to be maladaptive, these changes would have significant implications for captive-source populations that are used for reintroduction, including reduced survivorship.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 618
Author(s):  
Jacinta R Agius ◽  
Serge Corbeil ◽  
Karla J Helbig

Molluscan herpesviruses that are capable of infecting economically important species of abalone and oysters have caused significant losses in production due to the high mortality rate of infected animals. Current methods in preventing and controlling herpesviruses in the aquacultural industry are based around biosecurity measures which are impractical and do not contain the virus as farms source their water from oceans. Due to the lack of an adaptive immune system in molluscs, vaccine related therapies are not a viable option; therefore, a novel preventative strategy known as immune priming was recently explored. Immune priming has been shown to provide direct protection in oysters from Ostreid herpesvirus-1, as well as to their progeny through trans-generational immune priming. The mechanisms of these processes are not completely understood, however advancements in the characterisation of the oyster immune response has assisted in formulating potential hypotheses. Limited literature has explored the immune response of abalone infected with Haliotid herpesvirus as well as the potential for immune priming in these species, therefore, more research is required in this area to determine whether this is a practical solution for control of molluscan herpesviruses in an aquaculture setting.


2020 ◽  
Vol 16 (3) ◽  
pp. 320-324
Author(s):  
Lesya Besh ◽  
◽  
Oksana Matsyura ◽  
Olesya Besh ◽  
Olga Troyanovska ◽  
...  

Eczema herpeticum is a chronic dermatosis with erosive and ulcerative lesions of the skin in children of a predominantly young age. The clinical case presented in this article shows the severe course of herpesvirus infection combined with atopic dermatitis in a 5-month infant. A rash in the form of vesicles and pustules throughout the body with a predominant localisation on the skin of the face, the scalp, neck, and chest was found in the course of the examination of the child. Influence of infections on the course of allergic processes is an ambiguous and complicated issue. It has been proved that an infection can contribute to the development of allergies and exacerbate the course of already existing allergic inflammation. In recent years, an increasing number of studies have shown the preventive effect of infection on the development of allergic pathology in children, especially during the first years of life.


2021 ◽  
Vol 88 (1) ◽  
Author(s):  
Katalina Cruz ◽  
Tatiana M. Corey ◽  
Michel Vandenplas ◽  
María Trelis ◽  
Antonio Osuna ◽  
...  

There are limited data on the efficacy of antiparasitic treatments and husbandry methods to control nematode infections in captive populations of African green monkeys (AGMs), Chlorocebus sabaeus. In faecal egg count (FEC) tests, 10 of the 11 (91%) adult male AGMs captured from the large feral population on the island of St Kitts had evidence of nematode infections, mostly Capillaria (8/11, 73%), Trichuris trichiura (7/11, 64%) and strongylid species (7/11, 64%) specifically (hookworm and Trichostrongylus, 50/50), but also Strongyloides fuelleborni (1/11, 9%). When kept in individual cages with cleaning and feeding regimens to prevent reinfections and treated concurrently with ivermectin (300 µg/kg, given subcutaneously) and albendazole (10 mg/kg, given orally) daily for 3 days, 60% (6/10) of the AGMs were negative at a follow-up FEC at 3 months and by FEC and necropsy at the end of the study 5–8 months later. One monkey appeared to have been reinfected with T. trichiura after being negative by FEC at 3 months post-treatment. Four AGMs were positive for T. trichiura at the 3 month FEC follow-up but were negative at the end of the study after one further treatment regimen. Although initially being cleared of Capillaria following treatment, three AGMs were found to be infected at the end of the study. The ivermectin and albendazole treatment regimen coupled with good husbandry practices to prevent reinfections effectively controlled nematode infections in captive AGMs.


Sign in / Sign up

Export Citation Format

Share Document