scholarly journals The Healthy Crew, Clean Vessel, and Set Departure Date Triad: Successful Control of Outbreaks of COVID-19 On Board Four Cargo Vessels

Author(s):  
Tudor A. Codreanu ◽  
Nevada Pingault ◽  
Edmond O’Loughlin ◽  
Paul K. Armstrong ◽  
Benjamin Scalley

Abstract Background: A variety of infectious diseases can cause outbreaks on board vessels, with both health and economic effects. Internationally, Coronavirus Disease 2019 (COVID-19) outbreaks have occurred on numerous cruise and cargo vessels and the containment measures, travel restrictions, and border closures continue to make it increasingly difficult for ship operators world-wide to be granted pratique, effect crew changes, and conduct trade. An effective outbreak management strategy is essential to achieve the outcome triad – healthy crew, clean vessel, and set departure date – while maintaining the safety of the on-shore workers and broader community and minimizing disruption to trade. This report describes the principles of COVID-19 outbreak responses on four cargo vessels, including the successful use of one vessel as a quarantine facility. Methods: Established principles of management and the experiences of COVID-19 outbreaks on cruise ships elsewhere informed a health-lead, multi-agency, strict 14-day quarantine (Q) regime based on: population density reduction on board; crew segregation; vessel cleaning and sanitation; infection risk zones, access, and control measures; health monitoring; case identification and management; food preparation and delivery; waste management control; communication; and welfare and security. Findings: Sixty-five crew were diagnosed with Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection (range 2-25; attack rate 10%-81%; 15 asymptomatic). No deaths were recorded, and only one crew was hospitalized for COVID-19-related symptoms but did not require intensive care support. Catering crew were among the cases on three vessels. All non-essential crew (n-EC) and most of the cases were disembarked. During the vessel’s Q period, no further cases were diagnosed on board, and no crew became symptomatic after completion of Q. The outbreak response duration was 15-17 days from initial decision. No serious health issues were reported, no response staff became infected, and only two Q protocol breaches occurred among crew. Interpretation: Despite increasing risk of outbreaks on cargo vessels, maritime trade and crew exchanges must continue. The potential consequences of COVID-19 outbreaks to human life and to trade necessitate a balanced response. The principles described can offer health, financial, operational, and safety advantages.

1993 ◽  
Vol 28 (3-5) ◽  
pp. 441-449 ◽  
Author(s):  
Paul J. Garrison ◽  
Timothy R. Asplund

Nonpoint source controls were installed in a 1215 ha agricultural watershed in northeastern Wisconsin in the late 1970. Changes were made in handling of animal wastes and cropping practices to reduce runoff of sediment and nutrients. Modelling results predicted a reduction in phosphorus runoff of 30 percent. The water quality of White Clay Lake has worsened since the installation of NPS controls. The lake's phosphorus concentration has increased from a mean of 29 µg L−1 in the late 1970s to 44 µg L−1 in recent years. Water clarity has declined from 2.7 to 2.1 m and the mean summer chlorophyll levels have increased from 9 to 13 µg L−1 with peak values exceeding 40 µg L−1. Increased phosphorus loading is not the result of elevated precipitation but instead the failure of the control measures to sufficiently reduce P loading. Most of the effort was placed on structural changes while most of the P loading comes from cropland runoff. Further, soil phosphorus concentrations have increased because of artificial fertilizers and manure spreading. The White Clay Lake experience is discouraging since the majority of the polluters in this watershed utilized some NPS control practices, including 76 percent of the farms which installed waste management control facilities.


BMJ Open ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. e041516
Author(s):  
Wenchao Li ◽  
Jing Li ◽  
Junjian Yi

ObjectivesBetter understanding of the dynamics of the COVID-19 (2019 novel coronavirus disease) pandemic to curb its spread is now a global imperative. While travel restrictions and control measures have been shown to limit the spread of the disease, the effectiveness of the enforcement of those measures should depend on the strength of the government. Whether, and how, the government plays a role in fighting the disease, however, has not been investigated. Here, we show that government management capacities are critical to the containment of the disease.SettingWe conducted a statistical analysis based on cross-city comparisons within China. China has undergone almost the entire cycle of the anticoronavirus campaign, which allows us to trace the full dynamics of the outbreak, with homogeneity in standards for statistics recording.Primary and secondary outcome measuresOutcome measures include city-specific COVID-19 case incidence and recoveries in China.ResultsThe containment of COVID-19 depends on the effectiveness of the enforcement of control measures, which in turn depends on the local government’s management capacities. Specifically, government efficiency, capacity for law enforcement, and the transparency of laws and policies significantly reduce COVID-19 prevalence and increase the likelihood of recoveries. The organisation size of the government, which is not closely related to its capacity for management, has a limited role.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Zheng Li ◽  
Cynthia Jones ◽  
Girum S. Ejigu ◽  
Nisha George ◽  
Amanda L. Geller ◽  
...  

Abstract Background Three months after the first reported cases, COVID-19 had spread to nearly 90% of World Health Organization (WHO) member states and only 24 countries had not reported cases as of 30 March 2020. This analysis aimed to 1) assess characteristics, capability to detect and monitor COVID-19, and disease control measures in these 24 countries, 2) understand potential factors for the reported delayed COVID-19 introduction, and 3) identify gaps and opportunities for outbreak preparedness, particularly in low and middle-income countries (LMICs). We collected and analyzed publicly available information on country characteristics, COVID-19 testing, influenza surveillance, border measures, and preparedness activities in these countries. We also assessed the association between the temporal spread of COVID-19 in all countries with reported cases with globalization indicator and geographic location. Results Temporal spreading of COVID-19 was strongly associated with countries’ globalization indicator and geographic location. Most of the 24 countries with delayed COVID-19 introduction were LMICs; 88% were small island or landlocked developing countries. As of 30 March 2020, only 38% of these countries reported in-country COVID-19 testing capability, and 71% reported conducting influenza surveillance during the past year. All had implemented two or more border measures, (e.g., travel restrictions and border closures) and multiple preparedness activities (e.g., national preparedness plans and school closing). Conclusions Limited testing capacity suggests that most of the 24 delayed countries may have lacked the capability to detect and identify cases early through sentinel and case-based surveillance. Low global connectedness, geographic isolation, and border measures were common among these countries and may have contributed to the delayed introduction of COVID-19 into these countries. This paper contributes to identifying opportunities for pandemic preparedness, such as increasing disease detection, surveillance, and international collaborations. As the global situation continues to evolve, it is essential for countries to improve and prioritize their capacities to rapidly prevent, detect, and respond, not only for COVID-19, but also for future outbreaks.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tian Xian ◽  
Zhanqing Li ◽  
Jing Wei

COVID-19 has a tremendous impact on both human life and the environment due to the unprecedented large-scale shutdown of economic activities at the beginning of 2020. While it was widely expected to see a dramatic reduction in air pollution, reality appears to be much more complex due to the joint influences of emissions and meteorology in dictating air pollution. By analyzing ample meteorological and environmental observational data, this study attempts to evaluate the contribution of an economic lockdown or at a well-below normal level across China to air pollution during the COVID-19 pandemic in the Beijing-Tianjin-Hebei region. Besides the unprecedented emission reductions that helped to improve air quality, multiple other factors came into play, such as high humidity and low wind speed that are favorable for haze formation. After separating long-term trends, seasonal signals, holiday effects, and meteorological contributions concerning climatology, we estimated that the relative contributions of human activities to changes in particulate matter with a diameter of less than 2.5 μm and nitrogen dioxide during the epidemic were −17.13 μg/m3 and −0.03 μg/m3, respectively, with negative quantities denoting reductions to air pollution. Furthermore, comparing the changes in PM2.5 and NO2 concentrations after lockdown revealed that for short-term control measures, meteorological factors mainly affected pollutant particles.


Author(s):  
Thai Quang Pham ◽  
Maia Rabaa ◽  
Luong Huy Duong ◽  
Tan Quang Dang ◽  
Quang Dai Tran ◽  
...  

Background: One hundred days after SARS-CoV-2 was first reported in Vietnam on January 23rd, 270 cases have been confirmed, with no deaths. We describe the control measures used and their relationship with imported and domestically-acquired case numbers. Methods: Data on the first 270 SARS-CoV-2 infected cases and the timing and nature of control measures were captured by Vietnam's National Steering Committee for COVID-19 response. Apple and Google mobility data provided population movement proxies. Serial intervals were calculated from 33 infector-infectee pairs and used to estimate the proportion of pre-symptomatic transmission events and time-varying reproduction numbers. Results: After the first confirmed case on January 23rd, the Vietnamese Government initiated mass communications measures, contact tracing, mandatory 14-day quarantine, school and university closures, and progressive flight restrictions. A national lockdown was implemented between April 1st and 22nd. Around 200,000 people were quarantined and 266,122 RT-PCR tests conducted. Population mobility decreased progressively before lockdown. 60% (163/270) of cases were imported; 43% (89/208) of resolved infections were asymptomatic. 21 developed severe disease, with no deaths. The serial interval was 3.24 days, and 27.5% (95% confidence interval, 15.7%-40.0%) of transmissions occurred pre-symptomatically. Limited transmission amounted to a maximum reproduction number of 1.15 (95% confidence interval, 0.37-2.36). No community transmission has been detected since April 15th. Conclusions: Vietnam has controlled SARS-CoV-2 spread through the early introduction of communication, contact-tracing, quarantine, and international travel restrictions. The value of these interventions is supported by the high proportion of asymptomatic cases and imported cases, and evidence for substantial pre-symptomatic transmission.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Alexandra Ângelo ◽  
João Barata

Purpose Legionnaires’ disease is a major threat to public health. Solutions to deal with this problem are usually siloed and not entirely effective. This paper aims to model the information requirements of legionella-safe cooling towers in the era of Industry 4.0. Design/methodology/approach A year-long design science research was conducted in a cooling tower producer for heavy industries. The project started with a bibliometric analysis and literature review of legionella in cooling towers. Goal modeling techniques are then used to identify the requirements for digital transformation. Findings The improvement of legionella prevention, detection and outbreak response in digitally enabled cooling tower should involve different stakeholders. Digital twins and blockchain are disruptive technologies that can transform the cooling tower industry. Originality/value For theory, this study revises the most recent advances in legionella protection. Legionella-safe systems must be prepared to anticipate, monitor and immediate alert in case of an outbreak. For practice, this paper presents a distributed and digital architecture for cooling tower safety. However, technology is only a part of outbreak management solutions, requiring trustworthy conditions and real-time communication among stakeholders.


2020 ◽  
Vol 9 (2) ◽  
pp. 571 ◽  
Author(s):  
Péter Boldog ◽  
Tamás Tekeli ◽  
Zsolt Vizi ◽  
Attila Dénes ◽  
Ferenc A. Bartha ◽  
...  

We developed a computational tool to assess the risks of novel coronavirus outbreaks outside of China. We estimate the dependence of the risk of a major outbreak in a country from imported cases on key parameters such as: (i) the evolution of the cumulative number of cases in mainland China outside the closed areas; (ii) the connectivity of the destination country with China, including baseline travel frequencies, the effect of travel restrictions, and the efficacy of entry screening at destination; and (iii) the efficacy of control measures in the destination country (expressed by the local reproduction number R loc ). We found that in countries with low connectivity to China but with relatively high R loc , the most beneficial control measure to reduce the risk of outbreaks is a further reduction in their importation number either by entry screening or travel restrictions. Countries with high connectivity but low R loc benefit the most from policies that further reduce R loc . Countries in the middle should consider a combination of such policies. Risk assessments were illustrated for selected groups of countries from America, Asia, and Europe. We investigated how their risks depend on those parameters, and how the risk is increasing in time as the number of cases in China is growing.


Author(s):  
Magdalena M. Kraaij-Dirkzwager ◽  
Lianne G. C. Schol ◽  
Tjerk Jan Schuitmaker-Warnaar ◽  
Aura Timen ◽  
Jim E. Van Steenbergen

Infectious diseases remain a threat to public health, requiring the coordinated action of many stakeholders. Little has been written about stakeholder participation and approaches to sharing information, in dynamic contexts and under time pressure as is the case for infectious disease outbreaks. Communicable-disease specialists fear that delays in implementing control measures may occur if stakeholders are not included in the outbreak-management process. Two case studies described in this article show how the needs of stakeholders may vary with time and that early sharing of information takes priority over shared decision-making. The stakeholders itemized their needs and potential contributions in order to arrive at the collective interest of outbreak management. For this, the results suggest the potential for improvement through development of “network governance” including the effective sharing of information in large networks with varying needs. Outbreaks in which conflicting perceptions may occur among the stakeholders require particular attention.


Author(s):  
Andrea Maugeri ◽  
Martina Barchitta ◽  
Sebastiano Battiato ◽  
Antonella Agodi

Italy was the first country in Europe which imposed control measures of travel restrictions, quarantine and contact precautions to tackle the epidemic spread of the novel coronavirus (SARS-CoV-2) in all its regions. While such efforts are still ongoing, uncertainties regarding SARS-CoV-2 transmissibility and ascertainment of cases make it difficult to evaluate the effectiveness of restrictions. Here, we employed a Susceptible-Exposed-Infectious-Recovered-Dead (SEIRD) model to assess SARS-CoV-2 transmission dynamics, working on the number of reported patients in intensive care unit (ICU) and deaths in Sicily (Italy), from 24 February to 13 April. Overall, we obtained a good fit between estimated and reported data, with a fraction of unreported SARS-CoV-2 cases (18.4%; 95%CI = 0–34.0%) before 10 March lockdown. Interestingly, we estimated that transmission rate in the community was reduced by 32% (95%CI = 23–42%) after the first set of restrictions, and by 80% (95%CI = 70–89%) after those adopted on 23 March. Thus, our estimates delineated the characteristics of SARS-CoV2 epidemic before restrictions taking into account unreported data. Moreover, our findings suggested that transmission rates were reduced after the adoption of control measures. However, we cannot evaluate whether part of this reduction might be attributable to other unmeasured factors, and hence further research and more accurate data are needed to understand the extent to which restrictions contributed to the epidemic control.


Sign in / Sign up

Export Citation Format

Share Document