The Developmental Biology of Brachiopods

2001 ◽  
Vol 7 ◽  
pp. 69-88
Author(s):  
Gary Freeman

The chapter on anatomy in the Treatise on Invertebrate Paleontology (Part H, Brachiopoda, revised) (Williams et al., 1997) is the most current and comprehensive treatment that we have of reproduction and development in these animals. My contribution to this short course is a commentary on and addendum to this review. The study of the developmental biology of extant brachiopods describes a large part of their life history and defines several of the parameters that have to be taken into account when thinking about how a given set of genes will make it to the next generation (Havenhand, 1995). Some extant brachiopod genera like Discinisca and Crania (Neocrania) belong to families that first appeared in the fossil record during the Lower Ordovician or, as in the case of Glottidia, to a superfamily that first appeared during the Lower Cambrian. Studies on the development of these extant animals provide a picture of what the development of their Lower Paleozoic ancestors might have been like.

2004 ◽  
Vol 175 (6) ◽  
pp. 643-655 ◽  
Author(s):  
Bernard Laumonier ◽  
Albert Autran ◽  
Pierre Barbey ◽  
Alain Cheilletz ◽  
Thierry Baudin ◽  
...  

Abstract The deepest Hercynian metamorphic terrains in the Pyrenees and in the nearby Montagne Noire are made up of medium-grade orthogneisses and micaschists, and of high-grade, often granulitic, paragneisses. The existence of a granitic-metamorphic Cadomian basement and of its sedimentary Lower Paleozoic cover was advocated from the following main arguments: (i) a supposed unconformity of the Lower Cambrian Canaveilles Group (the lower part of the Paleozoic series) upon both granitic and metamorphic complexes; (ii) a ca. 580 Ma U-Pb age for the metagranitic Canigou gneisses. A SE to NW transgression of the Cambrian cover and huge Variscan recumbent (“penninic”) folds completed this classical model. However, recent U-Pb dating provided a ca. 474 Ma, early Ordovician (Arenigian) age for the me-tagranites, whereas the Vendian age (581 ± 10 Ma) of the base of the Canaveilles Group was confirmed [Cocherie et al., 2005]. In fact, these granites are laccoliths intruded at different levels of the Vendian-Lower Cambrian series. So the Cadomian granitic basement model must be discarded. In a new model, developed in the Pyrenees and which applies to the Montagne Noire where the orthogneisses appear to be Lower Ordovician intrusives too, there are neither transgression of the Paleozoic nor very large Hercynian recumbent folds. The pre-Variscan (pre-Upper Ordovician) series must be divided in two groups: (i) at the top, the Jujols Group, mainly early to late Cambrian, that belongs to a Cambrian-Ordovician sedimentary and magmatic cycle ; the early Ordovician granites pertain to this cycle; (ii) at the base, the Canaveilles Group of the Pyrenees and the la Salvetat-St-Pons series of the Montagne Noire, Vendian (to earliest Cambrian?), are similar to the Upper Alcudian series of Central Iberia. The Canaveilles Group is a shale-greywacke series with rhyodacitic volcanics, thick carbonates, black shales, etc. The newly defined olistostromic and carbonated, up to 150 m thick Tregurà Formation forms the base of the Jujols Group, which rests more or less conformably on the Canaveilles Group. The high-grade paragneisses which in some massifs underlie the Canaveilles and Jujols low- to medium grade metasediments are now considered to be an equivalent of the Canaveilles Group with a higher Variscan metamorphic grade; they are not derived from metamorphic Precambrian rocks. So, there is no visible Cadomian metamorphic (or even sedimentary) basement in the Pyrenees. However, because of its age, the Canaveilles Group belongs to the end of the Cadomian cycle and was deposited in a subsident basin, probably a back-arc basin which developed in the Cadomian, active-transform N-Gondwanian margin of this time. The presence of Cadomian-Panafrican (ca. 600 Ma) zircon cores in early Ordovician granites and Vendian volcanics implies the anatexis of a thick (> 15 km?) syn-Cadomian series, to be compared to the very thick Lower Alcudian series of Central Iberia, which underlies the Upper Alcudian series. Nd isotopic compositions of Neoproterozoic and Cambrian-Ordovician sediments and magmatites, as elsewhere in Europe, yield Paleoproterozoic (ca. 2 Ga) model-ages. From the very rare occurrences of rocks of this age in W-Europe, it can be envisionned that the thick Pyrenean Cadomian series lies on a Paleoproterozoic metamorphic basement. But, if such a basement does exist, it must be “hidden”, as well as the lower part of the Neoproterozoic series, in the Variscan restitic granulites of the present (Variscan) lower crust. So a large part of the pre-Variscan crust was made of volcano-sedimentary Cadomian series, explaining the “fertile” characteristics of this crust which has been able to produce the voluminous Lower Ordovician and, later, Upper Carboniferous granitoids.


1991 ◽  
Vol 28 (10) ◽  
pp. 1521-1533 ◽  
Author(s):  
Larry S. Lane

Since the early 1900's, regional reconnaissance in Alaska and the Yukon has failed to resolve the stratigraphy and structure of the pre-Mississippian Neruokpuk Formation. Its age and distribution have been defined and redefined as new data have slowly accumulated. In most recently published reconnaissance maps of the Yukon, the "Neruokpuk" includes nearly all of the pre-Mississippian strata in the British Mountains and is assigned a Precambrian age. In contrast, approximately half of contiguous strata in adjacent Alaska are interpreted as early Paleozoic in age and are excluded from the Neruokpuk. Recent detailed studies in the Firth River area of the Yukon have documented intense small-scale imbrication of fossiliferous Lower Cambrian to Devonian(?) units that were previously mapped as Precambrian Neruokpuk.A remarkable similarity between the lithologies of lower Paleozoic rocks in the British Mountains and the Selwyn Basin 1000 km to the southeast is strengthened by biostratigraphic ties in Lower Cambrian, Lower Ordovician, and Lower Silurian strata. This correlation between basin facies suggests that shelf and slope facies of upper Proterozoic through lower Paleozoic strata may also be correlatable between the two areas. The paleogeographic implications of these correlations indicate that pre-Mississippian strata in Arctic Alaska and the Yukon are part of a single Arctic–Pacific continental margin.The Neruokpuk Formation name should be restricted in Canada to the quartzite-dominant unit, contiguous with similar strata to which the restricted Neruokpuk definition applies in Alaska. The current broad definition, based on an assumed Proterozoic age but including many rock types, should be discontinued.


2018 ◽  
Vol 49 (1) ◽  
pp. 379-408 ◽  
Author(s):  
Roger B.J. Benson

Dinosaurs were large-bodied land animals of the Mesozoic that gave rise to birds. They played a fundamental role in structuring Jurassic–Cretaceous ecosystems and had physiology, growth, and reproductive biology unlike those of extant animals. These features have made them targets of theoretical macroecology. Dinosaurs achieved substantial structural diversity, and their fossil record documents the evolutionary assembly of the avian body plan. Phylogeny-based research has allowed new insights into dinosaur macroevolution, including the adaptive landscape of their body size evolution, patterns of species diversification, and the origins of birds and bird-like traits. Nevertheless, much remains unknown due to incompleteness of the fossil record at both local and global scales. This presents major challenges at the frontier of paleobiological research regarding tests of macroecological hypotheses and the effects of dinosaur biology, ecology, and life history on their macroevolution.


2001 ◽  
Vol 75 (6) ◽  
pp. 1119-1127 ◽  
Author(s):  
Jay A. Schneider

Over the past 75 years, the higher-level taxonomy of bivalves has received less attention than that of their fellow molluscs, gastropods. The publication of the bivalve volumes of the Treatise on Invertebrate Paleontology in 1969 was not followed by an explosion of study into the evolution of bivalves; rather, with only one or two exceptions, bivalve workers were noticeably absent from the cladistic and molecular revolutions that were taking place during the 1970s and 1980s, even as gastropods received considerable attention. Over the past ten years, cladistics and molecular systematics have begun to be applied to solve problems of bivalve evolutionary biology. These studies, most of which have been undertaken by paleontologists, have halted the stagnation in bivalve systematics. Bivalve systematics looks to have an exciting future, as the excellent fossil record of the Bivalvia will be used in conjunction with cladistics and molecular systematics to solve problems in not just bivalve evolution but evolutionary biology in general.


2020 ◽  
Author(s):  
Yuling An ◽  
Mingming Fan ◽  
Ziyu Li ◽  
You Peng ◽  
Xiaomeng Yi ◽  
...  

Abstract We shared our successful treatment experience of a severe tetanus patient in China. A 50 year old male patient was admitted to our hospital 10 days after the right arm injury due to pain and masticatory weakness. The pathogen of wound secretion was confirmed to be clostridium tetanus by next-generation sequencing (NGS).The patient's condition rapidly progressed to a severe state with autonomic instability. After debridement and comprehensive treatment in ICU, including deep analgesia and sedation with dexmedetomidine, ventilator support and anti-infection treatment, the patient finally recovered and discharged. This case suggested that early diagnosis and reasonable intervention of severe tetanus could reduce mortality.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7603
Author(s):  
Xiaoyan Zou ◽  
Xianqing Li ◽  
Jizhen Zhang ◽  
Huantong Li ◽  
Man Guo ◽  
...  

This study is predominantly about the differences in shale pore structure and the controlling factors of shale gas content between Lower Silurian and Lower Cambrian from the upper Yangtze plate, which are of great significance to the occurrence mechanism of shale gas. The field emission scanning electron microscopy combined with Particles (Pores) and Cracks Analysis System software, CO2/N2 adsorption and the high-pressure mercury injection porosimetry, and methane adsorption were used to investigate characteristics of overall shale pore structure and organic matter pore, heterogeneity and gas content of the Lower Paleozoic in southern Sichuan Basin and northern Guizhou province from the upper Yangtze plate. Results show that porosity and the development of organic matter pores of the Lower Silurian are better than that of the Lower Cambrian, and there are four main types of pore, including interparticle pore, intraparticle pore, organic matter pore and micro-fracture. The micropores of the Lower Cambrian shale provide major pore volume and specific surface areas. In the Lower Silurian shale, there are mesopores besides micropores. Fractal dimensions representing pore structure complexity and heterogeneity gradually increase with the increase in pore volume and specific surface areas. There is a significant positive linear relationship between total organic carbon content and micropores volume and specific surface areas of the Lower Paleozoic shale, and the correlation of the Lower Silurian is more obvious than that of the Lower Cambrian. The plane porosity of organic matter increases with the increase in total organic carbon when it is less than 5%. The plane porosity of organic matter pores is positively correlated with clay minerals content and negatively correlated with brittle minerals content. The adsorption gas content of Lower Silurian and Lower Cambrian shale are 1.51–3.86 m3/t (average, 2.31 m3/t) and 0.35–2.38 m3/t (average, 1.36 m3/t). Total organic carbon, clay minerals and porosity are the main controlling factors for the differences in shale gas content between Lower Cambrian and Lower Silurian from the upper Yangtze plate. Probability entropy and organic matter plane porosity of the Lower Silurian are higher than those of Lower Cambrian shale, but form factor and roundness is smaller.


Paleobiology ◽  
1996 ◽  
Vol 22 (2) ◽  
pp. 121-140 ◽  
Author(s):  
Mike Foote ◽  
David M. Raup

The incompleteness of the fossil record hinders the inference of evolutionary rates and patterns. Here, we derive relationships among true taxonomic durations, preservation probability, and observed taxonomic ranges. We use these relationships to estimate original distributions of taxonomic durations, preservation probability, and completeness (proportion of taxa preserved), given only the observed ranges. No data on occurrences within the ranges of taxa are required. When preservation is random and the original distribution of durations is exponential, the inference of durations, preservability, and completeness is exact. However, reasonable approximations are possible given non-exponential duration distributions and temporal and taxonomic variation in preservability. Thus, the approaches we describe have great potential in studies of taphonomy, evolutionary rates and patterns, and genealogy.Analyses of Upper Cambrian-Lower Ordovician trilobite species, Paleozoic crinoid genera, Jurassic bivalve species, and Cenozoic mammal species yield the following results: (1) The preservation probability inferred from stratigraphic ranges alone agrees with that inferred from the analysis of stratigraphic gaps when data on the latter are available. (2) Whereas median durations based on simple tabulations of observed ranges are biased by stratigraphic resolution, our estimates of median duration, extinction rate, and completeness are not biased. (3) The shorter geologic ranges of mammalian species relative to those of bivalves cannot be attributed to a difference in preservation potential. However, we cannot rule out the contribution of taxonomic practice to this difference. (4) In the groups studied, completeness (proportion of species [trilobites, bivalves, mammals] or genera [crinoids] preserved) ranges from 60% to 90%. The higher estimates of completeness at smaller geographic scales support previous suggestions that the incompleteness of the fossil record reflects loss of fossiliferous rock more than failure of species to enter the fossil record in the first place.


2015 ◽  
Vol 152 (6) ◽  
pp. 1123-1136 ◽  
Author(s):  
ELADIO LIÑÁN ◽  
JOSÉ ANTONIO GÁMEZ VINTANED ◽  
RODOLFO GOZALO

AbstractThe type material ofAgraulos antiquusSdzuy, 1961 from the La Herrería Formation, northern Spain, is revised together with additional material and included in the new genusLunagraulos. The stratigraphical range ofLunagraulos antiquus(Sdzuy, 1961) – occurring below that of the trilobite species of the generaLunolenus,MetadoxidesandDolerolenusin the type locality of Los Barrios de Luna in the province of León, northern Spain – and the accompanying ichnofossil assemblage demonstrate an Ovetian age (lower part of Cambrian Stage 3, currently being discussed by the International Subcommission on Cambrian Stratigraphy) for this species. Moreover, the trilobiteLunagraulos tamamensisn. gen. n. sp. is found in the Tamames Sandstone near the village of La Rinconada in the province of Salamanca, central Spain. The biostratigraphical position of this new taxon and its accompanying ichnoassemblage is also analysed and assigned to the lowermost Ovetian Stage. The genusLunagraulosis therefore the oldest agraulid found in the fossil record. The exceptional presence ofLunagraulosin a marine coarse siliciclastic succession – a facies rather typical for the ichnofossilsCruzianaandRusophycus, some of the oldest signs of trilobite activity – suggests that first trilobite representatives may have inhabited high- to middle-energy, marine environments. This hypothesis may also explain both the taxonomic and biostratigraphic heterogeneity of the first trilobite genera appearing across the world, due to preservation problems in this type of facies. Comparison of theLunagraulos biostratigraphy with other coeval Spanish fossil assemblages allows us to propose its intercontinental correlation with the oldest records of currently known trilobites.


1993 ◽  
Vol 6 ◽  
pp. 1-8 ◽  
Author(s):  
Susan M. Kidwell ◽  
Anna K. Behrensmeyer

Since their inception in 1978, the annual short courses sponsored by the Paleontological Society have aimed to broaden and to enhance the professional education of paleontologists, including students new to the field. The 1993 short course continues in that tradition, but differs from many previous courses in focussing not on a taxonomic group but on a broader aspect of the fossil record, namely the time resolution of fossil assemblages. This seemed an especially good topic for a short course because questions of absolute and relative time – how old? how fast? how synchronously? – pervade paleontology and historical geology in general.


2012 ◽  
Vol 12 ◽  
pp. 21-42
Author(s):  
Constance M. Soja

This course is designed so that topics in invertebrate paleontology are discussed in the context of reefs and their change through time. The goal is to help undergraduate students connect modern conservation issues with an enlightened appreciation of the fossil record. Using reefs as the centralizing theme of the course allows key concepts (invertebrate taxonomy and systematics, form and function, evolution, etc.) to be emphasized while exploring the importance of biogenic buildups—and communities that inhabited ecosystems adjacent to those “engines of evolution”—from the past to the present. Students who satisfactorily complete the course achieve seven main learning objectives: They 1) are intimately familiar with the fossil record of marine invertebrate life; 2) understand the evolutionary history of reefs and the ecological roles played by key reef-building invertebrates through time; 3) are able to engage in discussions about paleontological data published in the primary literature; 4) are knowledgeable about the value of paleontological evidence for shedding insights into the decline of ancient and living reefs; 5) gain experience working collaboratively and thinking outside-of-the-box to explore solutions to societal problems linked with the degradation of modern coral reefs; 6) improve scientific writing; and 7) develop a personal style for communicating scientific information to the general public. During classroom discussions, laboratories, a field trip, and museum visit, students explore the anatomy, ecology, evolutionary history, and life-sustaining ecosystem services of shelly animals and associated marine organisms that coexisted in reefs and adjacent habitats past and present. Evolutionary events, including the Cambrian “explosion,” mass extinctions, and gaps in reef existence, are linked to dramatic physical (tectonic) and climatic changes that occurred in Earth's past. Emphasizing evidence for the impact of global change on ancient reef communities alerts students to the value of paleontological data for predicting how modern reefs—and invertebrates living in interconnected marine ecosystems—will respond as the Sixth Extinction gains traction. That topic is the focus of an optional extended study (nine-day field trip offered in alternate years during spring break) of modern and Pleistocene reefs on San Salvador Island, Bahamas.


Sign in / Sign up

Export Citation Format

Share Document