Dealing with air pollution in Latin America: the case of Quito, Ecuador

1999 ◽  
Vol 4 (3) ◽  
pp. 375-388 ◽  
Author(s):  
JORGE JURADO ◽  
DOUGLAS SOUTHGATE

Located in a high Andean valley, Ecuador's capital city suffers from severe air pollution, emitted by manufacturing plants as well as motor vehicles. Improving air quality would result in diminished respiratory illness, which currently costs Quito's residents several millions of dollars annually in lost earnings and medical expenditures. Technology transfer has succeeded in reducing industrial emissions at a modest cost. But diesel-fueled trucks and buses, which are a major source of various pollutants, have been the primary focus of the local government's strategy for air quality improvement. To date, that strategy has met with some success, although future initiatives will involve higher abatement expenses and therefore will test the commitment of municipal authorities and the citizens they represent to pollution control.

Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 290
Author(s):  
Akvilė Feiferytė Skirienė ◽  
Žaneta Stasiškienė

The rapid spread of the coronavirus (COVID-19) pandemic affected the economy, trade, transport, health care, social services, and other sectors. To control the rapid dispersion of the virus, most countries imposed national lockdowns and social distancing policies. This led to reduced industrial, commercial, and human activities, followed by lower air pollution emissions, which caused air quality improvement. Air pollution monitoring data from the European Environment Agency (EEA) datasets were used to investigate how lockdown policies affected air quality changes in the period before and during the COVID-19 lockdown, comparing to the same periods in 2018 and 2019, along with an assessment of the Index of Production variation impact to air pollution changes during the pandemic in 2020. Analysis results show that industrial and mobility activities were lower in the period of the lockdown along with the reduced selected pollutant NO2, PM2.5, PM10 emissions by approximately 20–40% in 2020.


Author(s):  
Aneri A. Desai

In Indian metropolitan cities, the extensive growth of the motor vehicles has resulted in the deterioration of environmental quality and human health. The concentrations of pollutants at major traffic areas are exceeding the permissible limits. Public are facing severe respiratory diseases and other deadly cardio-vascular diseases In India. Immediate needs for vehicular air pollution monitoring and control strategies for urban cities are necessary. Vehicular emission is the main source of deteriorating the ambient air quality of major Indian cities due to rapid urbanization. Total vehicular population is increased to 15 Lacks as per recorded data of Regional Transport Organization (RTO) till 2014-2015. This study is focused on the assessment of major air pollution parameters responsible for the air pollution due to vehicular emission. The major air pollutants responsible for air pollution due to vehicular emissions are PM10, PM2.5, Sox, Nox, HC, CO2 and CO and Other meterological parameters like Ambient temperature, Humidity, Wind direction and Wind Speed. Sampling and analysis of parameters is carried out according to National Ambient Air Quality Standards Guidelines (NAAQS) (2009) and IS 5128.


Author(s):  
Mei Yang ◽  
Hong Fan ◽  
Kang Zhao

Aiming at improving the air quality and protecting public health, policies such as restricting factories, motor vehicles, and fireworks have been widely implemented. However, fine-grained spatiotemporal analysis of these policies’ effectiveness is lacking. This paper collected the hourly meteorological and PM2.5 data for three typical emission scenarios in Hubei, Beijing–Tianjin–Hebei (BTH), and Yangtze River Delta (YRD). Then, this study simulated the PM2.5 concentration under the same meteorological conditions and different emission scenarios based on a reliable hourly spatiotemporal random forest model ( R 2 exceeded 0.84). Finally, we investigated the fine-grained spatiotemporal impact of restricting factories, vehicles, and fireworks on PM2.5 concentrations from the perspective of hours, days, regions, and land uses, excluding meteorological interference. On average, restricting factories and vehicles reduced the PM2.5 concentration at 02:00, 08:00, 14:00, and 20:00 by 18.57, 16.22, 25.00, and 19.07 μ g / m 3 , respectively. Spatially, it had the highest and quickest impact on Hubei, with a 27.05 μ g / m 3 decrease of PM2.5 concentration and 17 day lag to begin to show significant decline. This was followed by YRD, which experienced a 23.52 μ g / m 3 decrease on average and a 23 day lag. BTH was the least susceptible; the PM2.5 concentration decreased by only 8.2 μ g / m 3 . In addition, influenced by intensive human activities, the cultivated, urban, and rural lands experienced a larger decrease in PM2.5 concentration. These empirical results revealed that restricting factories, vehicles, and fireworks is effective in alleviating air pollution and the effect showed significant spatiotemporal heterogeneity. The policymakers should further investigate influential factors of hourly PM2.5 concentrations, combining with local geographical and social environment, and implement more effective and targeted policies to improve local air quality, especially for BTH and the air quality at morning and night.


2019 ◽  
Vol 108 ◽  
pp. 02012
Author(s):  
Małgorzata Piaskowska-Silarska ◽  
Krzysztof Pytel ◽  
Stanisław Gumuła ◽  
Wiktor Hudy

Abstract. The publication presents an assessment of the impact of meteorological conditions on air quality in a given location. The subject matter of the work is related to problem-review issues in the field of environmental protection and energy management. The publication draws attention to the fact that despite several decades of ecological monitoring of air pollution, only in recent years attention has been paid to the scale of air pollution problem. The study examined the relationship between meteorological elements (wind velocity, relative humidity on the amount of air pollution immissions. Significant impact of precipitation, atmospheric pressure and thermal braking layer was indicated. The possibilities of air quality improvement were presented based on the measurement data concerning the immission of impurities.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 494 ◽  
Author(s):  
Yifeng Xue ◽  
Shihao Zhang ◽  
Zhen Zhou ◽  
Kun Wang ◽  
Kaiyun Liu ◽  
...  

Air pollution in Beijing, China has attracted continuous worldwide public attention along with the rapid urbanization of the city. By implementing a set of air pollution mitigation measures, the air quality of Beijing has been gradually improved in recent years. In this study, the intrinsic factors leading to air quality improvement in Beijing are studied via a quantitative evaluation of the temporal and spatial changes in emissions of primary air pollutants over the past ten years. Based on detailed activity levels of each economic sector and a localized database containing source and pollutant specific emission factors, an integrated emissions inventory of primary air pollutants discharged from various sources between 2006 and 2015 is established. With the implementation of phased air pollution mitigation measures, and the Clean Air Action Plan, the original coal-dominated energy structure in Beijing has undergone tremendous changes, resulting in the substantial reduction of multiple air pollutants. The total of emissions of six major atmospheric pollutants (PM10, PM2.5, SO2, NOX, VOCs and NH3) in Beijing decreased by 35% in 2015 compared to 2006—this noticeable decrease was well consistent with the declining trend of ambient concentration of criterion air pollutants (SO2, PM10, PM2.5 and NO2) and air quality improvement, thus showing a good correlation between the emission of air pollutants and the outcome of air quality. SO2 emission declined the most, at about 71.7%, which was related to the vigorous promotion of combustion source control, such as the shutdown of coal-fired facilities and domestic stoves and transition to clean energy, like natural gas or electricity. Emissions of PM decreased considerably (by 48%) due to energy structure optimization, industrial structure adjustments, and end-of-pipe PM source control. In general, NOX, NH3, and VOCs decreased relatively slightly, by 25%, 14%, and 2%, respectively, and accordingly, they represented the limiting factors for improving air quality and the key points of air pollution mitigation in Beijing for the future.


2019 ◽  
Vol 244 ◽  
pp. 127-137 ◽  
Author(s):  
Meifang Yu ◽  
Yun Zhu ◽  
Che-Jen Lin ◽  
Shuxiao Wang ◽  
Jia Xing ◽  
...  

Author(s):  
Daniela Debone ◽  
Mariana da Costa ◽  
Simone Miraglia

The coronavirus disease (COVID-19) pandemic caused by spreading rapidly a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed a unique situation for the humanity. Sao Paulo has reported 124,105 confirmed cases of COVID-19 and 5,623 deaths up to June 14th, being considered the epicenter of the pandemic in Brazil and in South America. Due to the measures for social distancing, there was a drop in the air pollution concentration in Sao Paulo. Starting on March 16th, 2020, we broke 90 days of social distancing into 13 weeks and compared to an equivalent period in 2019. We investigated the air quality improvement during the quarantine period and compared the associated avoided deaths to COVID-19 burden deaths. Nitrogen dioxide (NO2) was the best indicator of air quality in the analyzed weeks, since its reduction reached 58 %. Our study showed that the 5,623 deaths occurred during the analyzed weeks of quarantine represents an economic health loss of US$ 10.5 billion. In opposite, we observed a significant air quality improvement due to pollutants concentrations’ reductions during the analyzed weeks. Considering PM10, PM2.5 and NO2, the decrease of concentration levels respectively avoided 78, 337 and 387 premature deaths and prevented up to US$ 1.5 billion on health costs. These results highlight the importance of continuing to enforce existing air pollution regulations and measures to protect human health both during and after COVID-19 pandemic.


2019 ◽  
Vol 30 (3) ◽  
pp. 23-28
Author(s):  
Kinga Makuch

Abstract The article focuses on the selected aspects of introducing a resolution by a self-government of a province, which allows to determine the acceptable types and quality of fuels. The impact of polluted air on human health is significant. The actions carried out by the local authorities should be aimed on seeking effective air protection remedies; nonetheless, the scale of these activities seems to be still insignificant. One of the legal mechanisms is introducing resolutions determining the acceptable types and quality of fuels by a self-government of a province in order to protect the health of Polish residents and reduce the negative impact of air pollution on the environment. The question, however, is whether such resolutions could be audited with respect to the execution of such a resolution and whether they effectively lead to air quality improvement.


2021 ◽  
Author(s):  
Jingxiu Han ◽  
Han Jingxiu ◽  
Meng Congshen ◽  
Liu Jingyi ◽  
Xu Chunyu ◽  
...  

Abstract Exposure to air pollutants increase the mortality of population. Developing countries have taken measures to control air pollution. To explore the effects of air quality improvement on mortality, air quality and acute exposure-response coefficients of excess death in Beijing since the 1990’s were analyzed. It was divided into five stages according to the concentration level of pollutants. Coefficients for period 1990 – 2013 were obtained by retrieving literatures published before December 31, 2019. The coefficients for period 2015 – 2017 were obtained by analyzing the daily data of air pollutant concentration, meteorological and human mortality conducting Poisson Generalized Additive Model (GAM). Meta-analysis of random effect model was used to estimate the integrated coefficient of multiple studies at each stages. Comparative analysis was used to analyze the variation of air quality and coefficients in different stages. The results showed that the concentrations of sulfur dioxide (SO2), nitrogen dioxide (NO2), particulate matter with aerodynamic diameter ≤10μm (PM10) and ≤2.5μm (PM2.5) decreased by up to 50%, 21%, 22% and 15% in different stages. The coefficient of SO2 on death from respiratory diseases decreased by up to 63.79%. The coefficients of NO2 on mortality from non-accidental causes, cardiovascular disease, and respiratory disease decreased by up to 0.95%, 1.34% and 0.54%. The coefficients of PM10, PM2.5 on mortality from cardiovascular diseases and respiratory disease were decreased by up to 0.19%, 0.31%, 0.65% and 0.36%. Continued improvements in air quality have reduced the acute impact on the health of the local population.


Sign in / Sign up

Export Citation Format

Share Document