The vBow: a virtual violin bow controller for mapping gesture to synthesis with haptic feedback

2002 ◽  
Vol 7 (2) ◽  
pp. 215-220 ◽  
Author(s):  
Charles Nichols

The vBow, a virtual violin bow musical controller, has been designed to provide the computer musician with most of the gestural freedom of a bow on a violin string. Four cable and servomotor systems allow for four degrees of freedom, including the lateral motion of a bow stroke across a string, the rotational motion of a bow crossing strings, the vertical motion of a bow approaching and pushing into a string, and the longitudinal motion of a bow travelling along the length of a string. Encoders, attached to the shaft of the servomotors, sense the gesture of the performer, through the rotation of the servomotor shafts, turned by the motion of the cables. The data from each encoder is mapped to a parameter in synthesis software of a bowed-string physical model. The software also sends control voltages to the servomotors, engaging them and the cables attached to them with a haptic feedback simulation of friction, vibration, detents and elasticity.

Author(s):  
Jun Ni ◽  
Jibin Hu

The pivotal steering ability of a skid-steered vehicle is an important advantage compared with the steering ability of an Ackermann steered vehicle. In the pivotal steering condition, the strong non-linearity of the properties of the tyres makes prediction of the dynamic modelling and the performance difficult. For this purpose, this paper proposes an experimentally validated dynamic model to describe the motion of a skid-steered vehicle in the pivotal steering condition. The mechanical analytical model of the tyres was constructed on the assumption of an ‘elliptical parabolic’ contact pressure distribution. The dynamic model has nine degrees of freedom, including the longitudinal motion, the lateral motion and the yaw motion of the body and also the rotation of the wheels; the motor saturation is also considered. The analysis and experiments were based on a specific 6 × 6 unmanned skid-steered vehicle which is driven by six independent in-wheel motors, and the driving control algorithm of the vehicle was also described. By comparing the results of experiments and simulations, it was shown that the dynamic model provided an accurate prediction of the performance.


Author(s):  
Ganesh Mangavu ◽  
Anjan Kumar Dash

In this paper, an alternative design is proposed based on a family of three-legged manipulators. Such manipulators have two actuators (one vertical and one horizontal) in each leg, unlike the standard UP̅S Stewart platform, which has one actuator in each leg. The arrangement of the two actuators is such a way that, to have vertical motion of the shake table only the Vertical Motion Actuators (VMA) are actuated and for longitudinal or lateral motion, the Horizontal Motion Actuators (HMA) alone are moved. Due to its inherent features such as simplified kinematics, control and distributed loading, a study is carried out to determine the performance of such three-legged manipulators as a shake table. Sinusoidal motion and white noise motions are given to the actuators and shown that the VMA forces have linear relationship with the platform forces. The translational stiffness and the torsional stiffness are studied separately for the manipulators. In the dynamic analysis, it is highlighted that the gravity load of the legs is borne by the Vertical actuators, irrespective of the motion being spatial or planar. Hence, this topology provides scope for lighter electromechanical actuation. The performance analysis of the 3 legged configuration is accomplished using simulation results, in comparison to a 7-UP̅S configuration of shake table. A prototype of the shake table is fabricated and tested with earthquake data of El Centro.


Author(s):  
Federico Cheli ◽  
Marco Bocciolone ◽  
Marco Pezzola ◽  
Elisabetta Leo

The study of motorcycle’s stability is an important task for the passenger’s safety. The range of frequencies involved for the handling stability is lower than 10 Hz. A numerical model was developed to access the stability of a motorcycle vehicle in this frequency range. The stability is analysed using a linearized model around the straight steady state condition. In this condition, the vehicle’s vertical and longitudinal motion are decoupled, hence the model has only four degrees of freedom (steering angle, yaw angle, roll angle and lateral translation), while longitudinal motion is imposed. The stability was studied increasing the longitudinal speed. The input of the model can be either a driver input manoeuvre (roll angle) or a transversal component of road input able to excite the vibration modes. The driver is introduced in the model as a steering torque that allows the vehicle to follow a reference trajectory. To validate the model, experimental tests were done. To excite the vehicle modes, the driver input was not taken into account considering both the danger for the driver and the repeatability of the manoeuvre. Two different vehicle configurations were tested: vehicle 1 is a motorcycle [7] and vehicle 2 is a scooter. Through the use of the validated model, a sensitivity analysis was done changing structural (for example normal trail, steering angle, mass) and non structural parameters (for example longitudinal speed).


Author(s):  
Alexander Jöhl ◽  
Stephanie Lang ◽  
Stefanie Ehrbar ◽  
Matthias Guckenberger ◽  
Stephan Klöck ◽  
...  

AbstractTumor motion during radiation therapy increases the irradiation of healthy tissue. However, this problem may be mitigated by moving the patient via the treatment couch such that the tumor motion relative to the beam is minimized. The treatment couch poses limitations to the potential mitigation, thus the performance of the Protura (CIVCO) treatment couch was characterized and numerically modeled. The unknown parameters were identified using chirp signals and verified with one-dimensional tumor tracking. The Protura tracked chirp signals well up to 0.2 Hz in both longitudinal and vertical directions. If only the vertical or only the longitudinal direction was tracked, the Protura tracked well up to 0.3 Hz. However, there was unintentional yet substantial lateral motion in the former case. And during vertical motion, the extension caused rotation of the Protura around the lateral axis. The numerical model matched the Protura up to 0.3 Hz. Even though the Protura was designed for static positioning, it was able to reduce the tumor motion by 69% (median). The correlation coefficient between the tumor motion reductions of the Protura and the model was 0.99. Therefore, the model allows tumor-tracking results of the Protura to be predicted.


1959 ◽  
Vol 10 (2) ◽  
pp. 149-162 ◽  
Author(s):  
B. G. Newman

SummaryThe equations of motion for an isolated laminar viscous vortex at moderate to large Reynolds numbers are linearised, by assuming that both the rotational velocity and the deficit of longitudinal velocity are small compared with that in the free stream. The rotational motion and the longitudinal motion may then be superimposed and solutions are readily obtained for each. If the vortex is generated by a body with profile drag it is predicted that the deficit of longitudinal velocity will be positive, which is in agreement with experimental observation. Further details of the solution and its relation to the flow in real vortices are discussed; and the theory is compared with some measurements in a turbulent vortex.


1976 ◽  
Vol 20 (20) ◽  
pp. 462-462
Author(s):  
Michael E. McCauley

The office of Naval Research/Human Factors Research (ONR/HFR) Motion Generator was designed with three degrees of freedom (heave, pitch, and roll) to simulate the motion of an air-sea craft in varying ocean conditions through Sea State 5. Recent upgrading of the device has provided the capability for simulating the motion of advanced design sea craft as well as certain aspects of vertical motion common to land, sea, and air vehicles. Since 1968, the simulator has been used for investigation of the following topics: (1) basic research to provide equations for the prediction of motion sickness incidence based on parameters of vertical linear oscillation, (2) crew performance during simulated motion of two types of proposed naval vessels, and (3) evaluation of the efficacy of antimotion sickness medications in alleviating the symptoms of motion sickness. This simulator provides the opportunity for future research on the effects of motion on physiological and psychological processes as well as task performance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Kejun Hu ◽  
Kanty Rabenorosoa ◽  
Morvan Ouisse

Shape memory alloys (SMAs) are a group of metallic alloys capable of sustaining large inelastic strains that can be recovered when subjected to a specific process between two distinct phases. Regarding their unique and outstanding properties, SMAs have drawn considerable attention in various domains and recently became appropriate candidates for origami robots, that require bi-directional rotational motion actuation with limited operational space. However, longitudinal motion-driven actuators are frequently investigated and commonly mentioned, whereas studies in SMA-based rotational motion actuation is still very limited in the literature. This work provides a review of different research efforts related to SMA-based actuators for bi-directional rotational motion (BRM), thus provides a survey and classification of current approaches and design tools that can be applied to origami robots in order to achieve shape-changing. For this purpose, analytical tools for description of actuator behaviour are presented, followed by characterisation and performance prediction. Afterward, the actuators’ design methods, sensing, and controlling strategies are discussed. Finally, open challenges are discussed.


2021 ◽  
Vol 11 (19) ◽  
pp. 8955
Author(s):  
Mostafa Mohammadi ◽  
Davide Bicego ◽  
Antonio Franchi ◽  
Davide Barcelli ◽  
Domenico Prattichizzo

This paper addresses the problem of unilateral contact interaction by an under-actuated quadrotor UAV equipped with a passive tool in a bilateral teleoperation scheme. To solve the challenging control problem of force regulation in contact interaction while maintaining flight stability and keeping the contact, we use a parallel position/force control method, commensurate to the system dynamics and constraints in which using the compliant structure of the end-effector the rotational degrees of freedom are also utilized to attain a broader range of feasible forces. In a bilateral teleoperation framework, the proposed control method regulates the aerial manipulator position in free flight and the applied force in contact interaction. On the master side, the human operator is provided with force haptic feedback to enhance his/her situational awareness. The validity of the theory and efficacy of the solution are shown by experimental results. This control architecture, integrated with a suitable perception/localization pipeline, could be used to perform outdoor aerial teleoperation tasks in hazardous and/or remote sites of interest.


2013 ◽  
Vol 380-384 ◽  
pp. 595-600
Author(s):  
Hai Tian ◽  
Bo Hu ◽  
Can Yu Liu ◽  
Guo Chao Xie ◽  
Hui Min Luo

The research of this paper was derived from the small autonomous underwater vehicle (AUV)Raider well performed in the 15th International Underwater Vehicle Competition (IAUVC),San Diego. In order to improve the performance of underwater vehicle, the control system of performance motion played an important role on autonomous underwater vehicles stable motion, and the whole control system of AUV is the main point. Firstly, based on the motion equations of six degrees of freedom, the paper simplified the dynamical model reasonably in allusion; Due to the speed of Raider to find the target was very low, this paper considered the speed was approximately zero and only considered the vertical motion. Therefore, this paper established the vertical hydrodynamic model of Raider, obtaining the transfer equation of vertical motion. Through the experiment and Matlab/Simulink simulation, this paper got the actual depth of the step response curve and simulation curve, and verified the validity of the vertical hydrodynamic model and the correlation coefficient.


Author(s):  
Tao Wang ◽  
Hongbo Zhang ◽  
Guojian Tang

With the development of aerospace industry, the guidance system of an entry vehicle will be more robust, reliable and autonomous in the future. Based on fuzzy logic, the paper designs a predictor-corrector guidance law. The trajectory prediction is realized by numerical integration. The correction system is based on two fuzzy controllers, which correct the longitudinal motion and lateral motion synergistically. The error of flight range is eliminated by correcting the magnitude of bank angle. The altitude error is eliminated by correcting the attack angle. The lateral error is eliminated by regulating the reversal time of bank angle. Comparing with the traditional corrector based on Newton-Raphson iteration, the method in this paper only needs a single trajectory prediction in one correction cycle, which is favorable for on-board calculation. Moreover, the longitudinal motion and lateral motion are synergistically corrected in the predictor-corrector, which makes the method more robust and flexible.


Sign in / Sign up

Export Citation Format

Share Document