scholarly journals Performance and style in the work of Olgyay and Olgyay

2014 ◽  
Vol 18 (2) ◽  
pp. 167-176 ◽  
Author(s):  
David Leatherbarrow ◽  
Richard Wesley

The sun control device has to be on the outside of the building, an element of the facade, an element of architecture. And because this device is so important a part of our open architecture, it may develop into as characteristic a form as the Doric column.Victor Olgyay (1910–1970), a Hungarian architect who came to the United States in 1947 with his twin brother and collaborator, Aladár (1910–1963), is best known today as the author of Design with Climate: Bioclimatic Approach to Architectural Regionalism (1963), an important book often referenced in the environmental building design field [1]. As leaders in research in bioclimatic architecture from the early 1950s to the late 1960s, the Olgyay brothers could be considered the ‘fathers’ of contemporary environmental building design. Their research and publications laid the foundation for much of the building simulation software in use today. Other than the difference between working on graph paper and using computer-generated graphics, there is little difference between Autodesk's Ecotect Analysis (simulation and building energy analysis software) and the Olgyays' techniques for the analysis of environmental factors and graphical representation of climate. The manner in which the Olgyays established connections between building design and the science of climate laid the foundation for the development of environmental simulation, one of contemporary architecture's leading methods of form generation. Victor Olgyay's teaching, however, represents another kind of thinking, a broader concern for architecture, beyond energy performance. ‘The primary task of architecture,’ Olgyay announced to his students, ‘is to act in man's favour; to interpose itself between man and his natural surroundings in order to remove the environmental load from his shoulders.

2019 ◽  
Vol 11 (24) ◽  
pp. 6965
Author(s):  
Likai Wang ◽  
Patrick Janssen ◽  
Kian Wee Chen ◽  
Ziyu Tong ◽  
Guohua Ji

For sustainable building design, performance-based optimization incorporating parametric modelling and evolutionary optimization can allow architects to leverage building massing design to improve energy performance. However, two key challenges make such applications of performance-based optimization difficult in practice. First, due to the parametric modelling approaches, the topological variability in the building massing variants is often very limited. This, in turn, limits the scope for the optimization process to discover high-performing solutions. Second, for architects, the process of creating parametric models capable of generating the necessary topological variability is complex and time-consuming, thereby significantly disrupting the design processes. To address these two challenges, this paper presents a parametric massing algorithm based on the subtractive form generation principle. The algorithm can generate diverse building massings with significant topological variability by removing different parts from a predefined volume. Additionally, the algorithm can be applied to different building massing design scenarios without additional parametric modelling being required. Hence, using the algorithm can help architects achieve an explorative performance-based optimization for building massing design while streamlining the overall design process. Two case studies of daylighting performance optimizations are presented, which demonstrate that the algorithm can enhance the exploration of the potential in building massing design for energy performance improvements.


2015 ◽  
Vol 10 (3) ◽  
pp. 161-176 ◽  
Author(s):  
Ajla Aksamija

Developments in information technology are providing methods to improve current design practices, where uncertainties about various design elements can be simulated and studied from the design inception. Energy and thermal simulations, improved design representations and enhanced collaboration using digital media are increasingly being used. With the expanding interest in energy-efficient building design, whole building energy simulation programs are increasingly employed in the design process to help architects and engineers determine which design strategies save energy and improve building performance. The purpose of this research was to investigate the potential of these programs to perform whole building energy analysis during the early stages of architectural design, and compare the results with the actual building energy performance. The research was conducted by simulating energy usage of a fully functional research laboratory building using two different simulation tools that are aimed for early schematic design. The results were compared with utility data of the building to identify the degree of closeness with which simulation results match the actual energy usage of the building. Results indicate that modeled energy data from one of the software programs was significantly higher than the measured, actual energy usage data, while the results from the second application were comparable, but did not correctly predict monthly energy loads for the building. This suggests that significant deviations may exist between modeled and actual energy consumption for buildings, and more importantly between different simulation software programs. Understanding the limitations and suitability of specific simulation programs is crucial for successful integration of performance simulations with the design process.


2021 ◽  
Author(s):  
Messaouda Rais ◽  
Adel Boumerzoug ◽  
Balint Baranyai

AbstractAs it is clear, worldwide buildings are the largest consumer of the final energy consumption. In Algeria, it has been reported that 33% of the overall energy consumption was attributed to buildings. This is due to the design and constructional techniques of the residential buildings, which do not address the local climatic condition. To assess this situation, the study is focused on analyzing the existing residential buildings in Algeria, in terms of energy, thermal, daylight, and indoor air quality performance, using a dynamic simulation software. Typical building design in a hot and dry climate was selected. The results revealed that the existing residential buildings do not comply with the energy-efficient design standards. It was concluded that further strategies should be applied in this sector, in terms of building design, materials, and façade configuration.


2021 ◽  
Vol 13 (16) ◽  
pp. 9023
Author(s):  
Adriana Del Borghi ◽  
Thomas Spiegelhalter ◽  
Luca Moreschi ◽  
Michela Gallo

Carbon-neutral design is pivotal for achieving the future energy performance targets of buildings. This paper shows research projects that promote the environmental sustainability of university campuses at the international level. GHG accounting methods and operational strategies adopted by the University of Genoa (UNIGE), Italy, and the Florida International University (FIU) in Miami, USA, are compared, with both universities striving to make buildings and campus facilities benchmarked and carbon neutral in the near future. Our comparative research includes analyzing campus buildings at both universities and their attempts to design, retrofit, and transform these buildings into carbon neutral buildings. Two case studies were discussed: the Smart Energy Building (SEB) in the Savona Campus of the UNIGE, and the Paul L. Cejas School of Architecture (PCA) Building of the FIU. The SEB’s construction reduced emissions by about 86 tCO2/y, whereas the PCA’s retrofitting reduced GHG emissions by 30%. Other operational strategies, including energy efficiency and energy generation, allowed the UNIGE to reduce their overall Scope 1 + 2 GHG emissions by 25% from 2013 to 2016. Globally, FIU Scope 1 + 2 GHG emissions per person were found to result in more than three times the UNIGE’s emissions, and 2.4 times if evaluated per square meter. The results were compared with GHG emissions and operational strategies from other universities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongliu Li ◽  
Jun Zhang ◽  
Long Xia ◽  
Libing Yang ◽  
Weiguo Song ◽  
...  

AbstractCurrent codes for fire protection of buildings are mainly based on the movement of adults and neglect the movement characteristic of pre-school children. Having a profound comprehension of the difference between children and adults passing bottlenecks is of great help to improve the safety levels of preschool children. This paper presents an experimental study on the bottleneck flow of pre-school children in a room. The movement characteristics of children’s and adults’ bottleneck flow are investigated with two macroscopic properties: density and speed profiles as well as microscopic characteristic time: motion activation time, relaxation time, exit travel time and time gap. Arch-like density distributions are observed both for highly motivated children and adults, while the distance between the peak density region and the exit location is shorter for children and longer for adults. Children’s movement is less flexible manifested as longer motion activation time and longer relaxation time compared to that of adults. The findings from this study could enhance the understanding of crowd dynamics among the children population and provide supports for the scientific building design for children’s facilities.


2020 ◽  
Vol 10 (1) ◽  
pp. 224-231
Author(s):  
Erik Tischer ◽  
Petr Nachtigall ◽  
Jaromír Široký

AbstractSimulation modelling is one way to determine the capacity of railway lines. The specialized software tool OpenTrack was used for simulation. The aim of this paper was to find out whether the OpenTrack simulation software can be used for the calculation of headway, and to compare the results with the methodology of the Railway Infrastructure Administration (SŽDC). Using the software tool, a detailed transport network model can be created including all its important characteristics. The simulation follows the movements and behaviour of trains with predefined parameters on the modelled railway line. OpenTrack allows for monitoring a range of parameters including not only train delays, train conflicts and train traffic flow, but also for instance train energy performance and headways. During the first stage of work with OpenTrack, a simulation model was created, not reflecting any existing infrastructure but including parameters typical of railway lines in the Czech Republic, such as the configuration of gridirons, length of station tracks, size of block sections, etc. This model was subsequently used for the simulation of type train set journeys, and a headway calculator was used for the calculation of headway values. These values were compared with the methodology used by the Railway Infrastructure Administration. The paper is concluded by the comparison of the above mentioned approaches.


2021 ◽  
Vol 13 (9) ◽  
pp. 5201
Author(s):  
Kittisak Lohwanitchai ◽  
Daranee Jareemit

The concept of a zero energy building is a significant sustainable strategy to reduce greenhouse gas emissions. The challenges of zero energy building (ZEB) achievement in Thailand are that the design approach to reach ZEB in office buildings is unclear and inconsistent. In addition, its implementation requires a relatively high investment cost. This study proposes a guideline for cost-optimal design to achieve the ZEB for three representative six-story office buildings in hot and humid Thailand. The energy simulations of envelope designs incorporating high-efficiency systems are carried out using eQuest and daylighting simulation using DIALux evo. The final energy consumptions meet the national ZEB target but are higher than the rooftop PV generation. To reduce such an energy gap, the ratios of building height to width are proposed. The cost-benefit of investment in ZEB projects provides IRRs ranging from 10.73 to 13.85%, with payback periods of 7.2 to 8.5 years. The energy savings from the proposed designs account for 79.2 to 81.6% of the on-site energy use. The investment of high-performance glazed-windows in the small office buildings is unprofitable (NPVs = −14.77–−46.01). These research results could help architects and engineers identify the influential parameters and significant considerations for the ZEB design. Strategies and technical support to improve energy performance in large and mid-rise buildings towards ZEB goals associated with the high investment cost need future investigations.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1080
Author(s):  
Mamdooh Alwetaishi ◽  
Omrane Benjeddou

The concern regarding local responsive building design has gained more attention globally as of late. This is due to the issue of the rapid increase in energy consumption in buildings for the purpose of heating and cooling. This has become a crucial issue in educational buildings and especially in schools. The major issue in school buildings in Saudi Arabia is that they are a form of prototype school building design (PSBD). As a result, if there is any concern in the design stage and in relation to the selection of building materials, this will spread throughout the region. In addition to that, the design is repeated regardless of the climate variation within the kingdom of Saudi Arabia. This research will focus on the influence of the window to wall ratio on the energy load in various orientations and different climatic regions. The research will use the energy computer tool TAS Environmental Design Solution Limited (EDSL) to calculate the energy load as well as solar gain. During the visit to the sample schools, a globe thermometer will be used to monitor the globe temperature in the classrooms. This research introduces a framework to assist architects and engineers in selecting the proper window to wall ratio (WWR) in each direction within the same building based on adequate natural light with a minimum reliance on energy load. For ultimate WWR for energy performance and daylight, the WWR should range from 20% to 30%, depending on orientation, in order to provide the optimal daylight factor combined with building energy efficiency. This ratio can be slightly greater in higher altitude locations.


2010 ◽  
Vol 13 (2) ◽  
Author(s):  
John F Cogan ◽  
R. Glenn Hubbard ◽  
Daniel Kessler

In this paper, we use publicly available data from the Medical Expenditure Panel Survey - Insurance Component (MEPS-IC) to investigate the effect of Massachusetts' health reform plan on employer-sponsored insurance premiums. We tabulate premium growth for private-sector employers in Massachusetts and the United States as a whole for 2004 - 2008. We estimate the effect of the plan as the difference in premium growth between Massachusetts and the United States between 2006 and 2008—that is, before versus after the plan—over and above the difference in premium growth for 2004 to 2006. We find that health reform in Massachusetts increased single-coverage employer-sponsored insurance premiums by about 6 percent, or $262. Although our research design has important limitations, it does suggest that policy makers should be concerned about the consequences of health reform for the cost of private insurance.


Criminologie ◽  
2005 ◽  
Vol 30 (1) ◽  
pp. 53-72 ◽  
Author(s):  
Marc Alain

The professional smuggling of mass consumption products develops when demand for a product is not adequately fulfilled by the legitimate market. The difficulties encountered in supplying are, in most contemporary cases, caused by real rarity of the desired product. For other cases, however, the rarity is largely virtual in that government taxes aimed at the product in question lead to increasing the product's price to a prohibitive end. This was the case with cigarettes in Canada between 1985 and 1994. Before both, the federal and provincial, governments decided to drastically decrease cigarette taxes in February 1994, the price for a pack of cigarettes was five to six times higher than the same product in the United States. This article begins with a brief review of the contribution made by economists in regard to contemporary smuggling. Focus will be aimed at common characteristics of the smuggling phenomenon across the world. Elements which are more particular to the Canadian smuggling situation will be identified as well. While the difference in the price of cigarettes between Canada and the United States would seem to be the undeniable driving force behind the development of smuggling activities at the countries ' border, one key question remains unexplained. Why was the volume of contraband unequally distributed across Canada even though the price of cigarettes remained largely consistent throughout all provinces? The level of organization of smuggling networks was much higher in Eastern Canada, and particularly in Quebec, than it was in the western provinces. It is argued that the reasons for this are not only due to price, but to a series of political, historical, and geographical factors which allowed cigarette smugglers to function better in Quebec than in the rest of the country.


Sign in / Sign up

Export Citation Format

Share Document