Ovarian Carcinomas: Insights into Origins Using Confocal Microscopy and Fluorescence in Situ Hybridization on Intact Paraffin Sections

1997 ◽  
Vol 3 (S2) ◽  
pp. 5-6
Author(s):  
N. G. Wolf ◽  
F. W. Abdul-Karim ◽  
N. J. Schork ◽  
S. Schwartz

Although ovarian carcinomas are the most lethal gynecologic tumors, their origins remain unclear. Do they develop from malignant transformation of benign neoplasms through a multistep process of tumor progression, or do they arise de novo? The histologically benign and/or low malignant potential (LMP) components in heterogeneous ovarian carcinomas have been considered as evidence supporting the theory of tumor progression. These components are interpretted as the remnants of pre-existing neoplasms that underwent malignant transformation. In two other possible interpretations, however, such components may be clones which developed independently (de novo hypothesis) or they may represent malignant epithelium which underwent focal maturation (maturation hypothesis).To evaluate genetic relationships of the histological components in heterogeneous ovarian carcinomas, 10 such neoplasms and 5 normal ovary controls were examined using fluorescence in situhybridization (FISH) on intact paraffin sections (6 μm).The retention of tissue architecture allowed direct correlation of detectable genetic aberrations with histology, and comparison of malignant components with adjacent histologically benign or LMP components.

Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Author(s):  
Robyn Rufner ◽  
Gerhard W. Hacker ◽  
Michele Forte ◽  
Nancyleigh E. Carson ◽  
Cristina Xenachis ◽  
...  

The use of immunogold-silver staining (IGSS) to enhance label penetration and Localization for immunocytochemistry or in situ hybridization utilizing a variety of metallic salts has been documented. In this morphological study, the effects of silver acetate, silver lactate and silver nitrate were evaluated for immunogold-labeling of a trial natriuretic peptides (ANP) in rat right atria.Eight Wistar Kyoto retired breeders were sedated with pentobarbital, perfused with either 4% paraformaldehyde (LM) or Karnovsky's fixative (EM), and right atria were dissected, processed, embedded in paraffin or epon, respectively and sectioned according to conventional methods. For light microscopy, an indirect IGSS method according to Hacker (3) was performed. Paraffin sections on glass slides were washed in ddH2O, immersed in Lugol's iodine, washed in ddH2O and treated with 2.5% aqueous sodium thiosulfate for 20 sec. After additional washes in ddH2O and TBS-0.1% fish gelatin, 10% normal goat serum (PBS with 1% BSA) was applied for 20 min before an overnight incubation at 4°C with a polyclonal α-ANP primary antibody (Peninsula Labs, 1:1000 in TBS/BSA).


Nature ◽  
2021 ◽  
Author(s):  
Fides Zenk ◽  
Yinxiu Zhan ◽  
Pavel Kos ◽  
Eva Löser ◽  
Nazerke Atinbayeva ◽  
...  

AbstractFundamental features of 3D genome organization are established de novo in the early embryo, including clustering of pericentromeric regions, the folding of chromosome arms and the segregation of chromosomes into active (A-) and inactive (B-) compartments. However, the molecular mechanisms that drive de novo organization remain unknown1,2. Here, by combining chromosome conformation capture (Hi-C), chromatin immunoprecipitation with high-throughput sequencing (ChIP–seq), 3D DNA fluorescence in situ hybridization (3D DNA FISH) and polymer simulations, we show that heterochromatin protein 1a (HP1a) is essential for de novo 3D genome organization during Drosophila early development. The binding of HP1a at pericentromeric heterochromatin is required to establish clustering of pericentromeric regions. Moreover, HP1a binding within chromosome arms is responsible for overall chromosome folding and has an important role in the formation of B-compartment regions. However, depletion of HP1a does not affect the A-compartment, which suggests that a different molecular mechanism segregates active chromosome regions. Our work identifies HP1a as an epigenetic regulator that is involved in establishing the global structure of the genome in the early embryo.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Gregorio Serra ◽  
Luigi Memo ◽  
Vincenzo Antona ◽  
Giovanni Corsello ◽  
Valentina Favero ◽  
...  

Abstract Introduction In 1973, Petrea Jacobsen described the first patient showing dysmorphic features, developmental delay and congenital heart disease (atrial and ventricular septal defect) associated to a 11q deletion, inherited from the father. Since then, more than 200 patients have been reported, and the chromosomal critical region responsible for this contiguous gene disorder has been identified. Patients’ presentation We report on two unrelated newborns observed in Italy affected by Jacobsen syndrome (JBS, also known as 11q23 deletion). Both patients presented prenatal and postnatal bleeding, growth and developmental delay, craniofacial dysmorphisms, multiple congenital anomalies, and pancytopenia of variable degree. Array comparative genomic hybridization (aCGH) identified a terminal deletion at 11q24.1-q25 of 12.5 Mb and 11 Mb, in Patient 1 and 2, respectively. Fluorescent in situ hybridization (FISH) analysis of the parents documented a de novo origin of the deletion for Patient 1; parents of Patient 2 refused further genetic investigations. Conclusions Present newborns show the full phenotype of JBS including thrombocytopenia, according to their wide 11q deletion size. Bleeding was particularly severe in one of them, leading to a cerebral hemorrhage. Our report highlights the relevance of early diagnosis, genetic counselling and careful management and follow-up of JBS patients, which may avoid severe clinical consequences and lower the mortality risk. It may provide further insights and a better characterization of JBS, suggesting new elements of the genotype-phenotype correlations.


2021 ◽  
Author(s):  
Elizabeth B Lamont ◽  
Andrew J Yee ◽  
Stuart L Goldberg ◽  
David S Siegel ◽  
Andrew D Norden

Abstract Genomic biomarkers inform treatment in multiple myeloma (MM) making patient clinical data a potential window into MM biology. We evaluated de novo MM patients for associations between specific MM cytogenetic patterns and prior cancer history. Analyzing a MM real-world dataset (RWD), we identified a cohort of 1,769 patients with fluorescent in-situ hybridization (FISH) cytogenetic testing at diagnosis. Fully 241 patients (0.14) had histories of prior cancer(s). Amplification of the long arm of chromosome 1 [amp(1q)] varied by prior cancer history (0.31 with prior cancer vs 0.24 without; p = .02). No other MM translocations, amplifications, or deletions were associated with prior cancers. Amp(1q) and cancer history remained strongly associated in a logistic regression adjusting for patient demographic and disease attributes. The results merit follow-up regarding carcinogenic treatment effects and screening strategies for second malignancies. Broadly the findings suggest analyses of patient-level phenotypic-genomic RWD may accelerate cancer research through hypothesis generating studies.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Bingfeng Lu ◽  
Ruqi Jiang ◽  
Bumin Xie ◽  
Wu Wu ◽  
Yang Zhao

AbstractGene fusions are thought to be driver mutations in multiple cancers and are an important factor for poor patient prognosis. Most of them appear in specific cancers, thus satisfactory strategies can be developed for the precise treatment of these types of cancer. Currently, there are few targeted drugs to treat gynecologic tumors, and patients with gynecologic cancer often have a poor prognosis because of tumor progression or recurrence. With the application of massively parallel sequencing, a large number of fusion genes have been discovered in gynecologic tumors, and some fusions have been confirmed to be involved in the biological process of tumor progression. To this end, the present article reviews the current research status of all confirmed fusion genes in gynecologic tumors, including their rearrangement mechanism and frequency in ovarian cancer, endometrial cancer, endometrial stromal sarcoma, and other types of uterine tumors. We also describe the mechanisms by which fusion genes are generated and their oncogenic mechanism. Finally, we discuss the prospect of fusion genes as therapeutic targets in gynecologic tumors.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1342
Author(s):  
Shaghayegh Mehravi ◽  
Gholam Ali Ranjbar ◽  
Ghader Mirzaghaderi ◽  
Anita Alice Severn-Ellis ◽  
Armin Scheben ◽  
...  

The species of Pimpinella, one of the largest genera of the family Apiaceae, are traditionally cultivated for medicinal purposes. In this study, high-throughput double digest restriction-site associated DNA sequencing technology (ddRAD-seq) was used to identify single nucleotide polymorphisms (SNPs) in eight Pimpinella species from Iran. After double-digestion with the enzymes HpyCH4IV and HinfI, a total of 334,702,966 paired-end reads were de novo assembled into 1,270,791 loci with an average of 28.8 reads per locus. After stringent filtering, 2440 high-quality SNPs were identified for downstream analysis. Analysis of genetic relationships and population structure, based on these retained SNPs, indicated the presence of three major groups. Gene ontology and pathway analysis were determined by using comparison SNP-associated flanking sequences with a public non-redundant database. Due to the lack of genomic resources in this genus, our present study is the first report to provide high-quality SNPs in Pimpinella based on a de novo analysis pipeline using ddRAD-seq. This data will enhance the molecular knowledge of the genus Pimpinella and will provide an important source of information for breeders and the research community to enhance breeding programs and support the management of Pimpinella genomic resources.


2020 ◽  
Vol 154 (6) ◽  
pp. 811-815
Author(s):  
Levon Katsakhyan ◽  
Virginia A LiVolsi ◽  
Ara A Chalian ◽  
Paul J Zhang

Abstract Objectives Carcinosarcomas of the salivary gland are rare neoplasms and have been described arising de novo or in association with pleomorphic adenoma (PA). PLAG1 and HMGA2 translocations are known to occur in PAs and carcinomas ex PA but are mutually exclusive. Methods We report a case of a carcinosarcoma in the parotid gland of a 77-year-old man with unusual anaplastic sarcomatoid giant cell morphology. Results Microscopically, a small separate PA was found adjacent to the carcinosarcoma. By conventional notion, the PA and carcinosarcoma would be considered related, as carcinosarcomas are well known to arise from PAs (carcinosarcoma ex PA). However, fluorescence in situ hybridization (FISH) assay demonstrated PLAG1 translocation in the carcinosarcoma and HMGA2 translocation in the separate PA. Conclusions These findings support that the carcinosarcoma likely originated from another PA with a PLAG1 translocation or de novo but not from the coexisting PA harboring a different translocation. To our knowledge, the case is the first to demonstrate PLAG1 translocation by FISH in a sarcomatous component of any parotid gland tumor, which may help better classify these tumors. In addition, multiple PAs are commonly found in the salivary gland, and to our knowledge, our case is the first to demonstrate that the same parotid gland can host PAs and PA-related tumors with different translocations.


2005 ◽  
Vol 53 (9) ◽  
pp. 1043-1070 ◽  
Author(s):  
Ann M. Dvorak

Ultrastructural studies of human mast cells (HMCs) and basophils (HBs) are reviewed. Sources of HMCs include biopsies of tissue sites and in situ study of excised diseased organs; isolated, partially purified samples from excised organs; and growth-factor-stimulated mast cells that develop de novo in cultures of cord blood cells. Sources of HBs for study include partially purified peripheral blood basophils, basophils in tissue biopsies, and specific growth factor-stimulated basophils arising de novo from cord blood cells. The ultrastructural studies reviewed deal with identity, secretion, vesicles, recovery, and synthesis issues related to the biology of these similar cells.


Sign in / Sign up

Export Citation Format

Share Document