Contrast Mechanisms and Image Formation in Helium Ion Microscopy

2009 ◽  
Vol 15 (2) ◽  
pp. 147-153 ◽  
Author(s):  
David C. Bell

AbstractThe helium ion microscope is a unique imaging instrument. Based on an atomic level imaging system using the principle of field ion microscopy, the helium ion source has been shown to be incredibly stable and reliable, itself a remarkable engineering feat. Here we show that the image contrast is fundamentally different to other microscopes such as the scanning electron microscope (SEM), although showing many operational similarities due to the physical ion interaction mechanisms with the sample. Secondary electron images show enhanced surface contrast due the small surface interaction volume as well as elemental contrast differences, such as for nanowires imaged on a substrate. We present images of nanowires and nanoparticles for comparison with SEM imaging. Applications of Rutherford backscattered ion imaging as a unique and novel imaging mechanism are described. The advantages of the contrast mechanisms offered by this instrument for imaging nanomaterials are clearly apparent due to the high resolution and surface sensitivity afforded in the images. Future developments of the helium ion microscope should yield yet further improvements in imaging and provide a platform for continued advances in microscope science and nanoscale research.

2013 ◽  
Vol 4 ◽  
pp. 453-460 ◽  
Author(s):  
Vasilisa Veligura ◽  
Gregor Hlawacek ◽  
Robin P Berkelaar ◽  
Raoul van Gastel ◽  
Harold J W Zandvliet ◽  
...  

Helium ion microscopy (HIM) was used to investigate the interaction of a focused He+ ion beam with energies of several tens of kiloelectronvolts with metals. HIM is usually applied for the visualization of materials with extreme surface sensitivity and resolution. However, the use of high ion fluences can lead to significant sample modifications. We have characterized the changes caused by a focused He+ ion beam at normal incidence to the Au{111} surface as a function of ion fluence and energy. Under the influence of the beam a periodic surface nanopattern develops. The periodicity of the pattern shows a power-law dependence on the ion fluence. Simultaneously, helium implantation occurs. Depending on the fluence and primary energy, porous nanostructures or large blisters form on the sample surface. The growth of the helium bubbles responsible for this effect is discussed.


Author(s):  
William B. Thompson ◽  
John Notte ◽  
Larry Scipioni ◽  
Mohan Ananth ◽  
Lewis Stern ◽  
...  

Abstract Currently, the helium ion microscope (HIM) can be operated in three imaging modes; ion induced secondary electron (SE) mode, Rutherford backscatter imaging (RBI) mode, and scanning transmission ion imaging (STIM) mode. This paper will provide an overview of microscope’s ion source, its ion optics, the system architecture, the fundamentals of these three imaging modes and many FA related examples. Recently integrated with the microscope are a Rutherford Backscatter (RBS) detector for materials analysis and a gas injection system (GIS) for material modification. We will describe this new hardware and suggest how these additions could also contribute to the helium ion microscope being an important failure analysis tool.


2012 ◽  
Vol 3 ◽  
pp. 507-512 ◽  
Author(s):  
Gregor Hlawacek ◽  
Vasilisa Veligura ◽  
Stefan Lorbek ◽  
Tijs F Mocking ◽  
Antony George ◽  
...  

Background: Helium ion microscopy is a new high-performance alternative to classical scanning electron microscopy. It provides superior resolution and high surface sensitivity by using secondary electrons. Results: We report on a new contrast mechanism that extends the high surface sensitivity that is usually achieved in secondary electron images, to backscattered helium images. We demonstrate how thin organic and inorganic layers as well as self-assembled monolayers can be visualized on heavier element substrates by changes in the backscatter yield. Thin layers of light elements on heavy substrates should have a negligible direct influence on backscatter yields. However, using simple geometric calculations of the opaque crystal fraction, the contrast that is observed in the images can be interpreted in terms of changes in the channeling probability. Conclusion: The suppression of ion channeling into crystalline matter by adsorbed thin films provides a new contrast mechanism for HIM. This dechanneling contrast is particularly well suited for the visualization of ultrathin layers of light elements on heavier substrates. Our results also highlight the importance of proper vacuum conditions for channeling-based experimental methods.


2012 ◽  
Vol 3 ◽  
pp. 501-506 ◽  
Author(s):  
Vasilisa Veligura ◽  
Gregor Hlawacek ◽  
Raoul van Gastel ◽  
Harold J W Zandvliet ◽  
Bene Poelsema

Background: The unique surface sensitivity and the high resolution that can be achieved with helium ion microscopy make it a competitive technique for modern materials characterization. As in other techniques that make use of a charged particle beam, channeling through the crystal structure of the bulk of the material can occur. Results: Here, we demonstrate how this bulk phenomenon affects secondary electron images that predominantly contain surface information. In addition, we will show how it can be used to obtain crystallographic information. We will discuss the origin of channeling contrast in secondary electron images, illustrate this with experiments, and develop a simple geometric model to predict channeling maxima. Conclusion: Channeling plays an important role in helium ion microscopy and has to be taken into account when trying to achieve maximum image quality in backscattered helium images as well as secondary electron images. Secondary electron images can be used to extract crystallographic information from bulk samples as well as from thin surface layers, in a straightforward manner.


2021 ◽  
Vol 161 ◽  
pp. S1407-S1408
Author(s):  
L. Volz ◽  
T. Vichtl ◽  
C. Collins-Fekete ◽  
J. Seco

MRS Advances ◽  
2018 ◽  
Vol 3 (10) ◽  
pp. 505-510 ◽  
Author(s):  
Marek E. Schmidt ◽  
Shinichi Ogawa ◽  
Hiroshi Mizuta

ABSTRACTThe gas field ion source (GFIS) is able to generate tightly focused ion beams, which can be used to image or modify a specimen. Among the beam species, helium offers extremely high resolution, however, low sputter yield and sub-surface bubble formation are limiting factors in some applications. Therefore, heavier ions such as neon or nitrogen are used as well. In addition to being a suitable choice for lithographic mask editing, secondary electron (SE) generation by nitrogen beams has been recently shown to be affected by certain types of samples, providing additional contrast compared to helium ions. Here, we report our progress on the study of SE imaging differences between the nitrogen ion microscopy (N2IM) and helium ion microscopy (HIM). SE images of two nano-patterned samples comprising insulator, metal and carbon regions have been imaged by nitrogen and helium ions in two fundamentally different GFIS microscopes. The results corroborate previous reports of significant contrast differences in certain samples caused by the different ion species.


2014 ◽  
pp. 32-35
Author(s):  
Teodor Paunescu ◽  
Sylvie Breton ◽  
Dennis Brown

1999 ◽  
Vol 589 ◽  
Author(s):  
Jingyue Liu

AbstractThe use of a high-brightness field emission gun and novel secondary electron detection systems makes it possible to acquire nanometer-resolution surface images of bulk materials, even at low electron beam voltages. The advantages of low-voltage SEM include enhanced surface sensitivity, reduced sample charging on non-conducting materials, and significantly reduced electron range and interaction volume. High-resolution images formed by collecting the backscattered electron signal can give information about the size and spatial distribution of metal nanoparticles in supported catalysts. Low-voltage XEDS can provide compositional information of bulk samples with enhanced surface sensitivity and significantly improved spatial resolution. High-resolution SEM techniques enhance our ability to detect and, subsequently, analyze the composition of nanoparticles in supported metal catalysts. Applications of high-resolution SEM imaging and microanalysis techniques to the study of industrial supported catalysts are discussed.


Scanning ◽  
2008 ◽  
Vol 30 (6) ◽  
pp. 457-462 ◽  
Author(s):  
Michael T. Postek ◽  
Andras E. Vladár
Keyword(s):  

2020 ◽  
Vol 91 (12) ◽  
pp. 123301
Author(s):  
A. D. Melnik ◽  
V. I. Afanasyev ◽  
V. I. Davydenko ◽  
A. V. Kolmogorov ◽  
M. I. Mironov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document