Morphology of Foliar Trichomes of the Chinese Cork OakQuercus variabilisby Electron Microscopy and Three-Dimensional Surface Profiling

2011 ◽  
Vol 17 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Ki Woo Kim ◽  
Do-Hyun Cho ◽  
Pan-Gi Kim

AbstractMorphology of foliar trichomes was analyzed inQuercus variabilisby electron microscopy and three-dimensional surface profiling. Leaves from suppressed or dominant sprouts of the oak species were collected after a forest fire to unravel the effects of the disturbance factor on sprouting of the oak species. Scanning electron microscopy revealed two types of trichomes depending on the leaf surface. The trichomes on the adaxial surface were branched and constricted, and possessed a single row of thin-walled cells with a collapsed morphology (glandular branched uniseriate trichomes). Meanwhile, the trichomes on the abaxial surface were star-shaped, unfused with each other, and had 6 to 10 rays (nonglandular simple stellate trichomes). An apparent proliferation of trichomes was evident on the adaxial surface of the dominant sprouts. Uniseriate trichomes could be discernable as an elevation from the surface by white light scanning interferometry. By transmission electron microscopy, thin and convoluted cell wall, degenerated cytoplasm, and a single row of cells were characteristic of the trichomes on the adaxial surface. The thick cell walls of the mature trichomes on the abaxial surface represented the nonglandular nature. This is the first report on the morphological and ultrastructural characterization of foliar trichomes of the oak species.

Author(s):  
Kazem Behbehani ◽  
Osama Hassounah ◽  
Ramesh Nayak

The infection of cattle with the larval stage of Echinococcus granulosus in the State of Kuwait has been reported by several investigators. Both fertile and infertile cysts were present in the infected animals. Previous study revealed an infection rate of 40.2% in 881 Somalian cattle and 32.5% in 43 native cattle. The home slaughtered sheep appeared to play an important role in the dissemination of the parasite and the life of Echinococcus granulosus in the State of Kuwait was assumed to be sheep - dog - sheep. The fine structure of the hydatid cyst and protoscolex of Echinococcus granulosus has been studied by light and transmission electron microscopy. The three dimensional surface features of the hydatid cyst germinative membrane and the brood capsules have not been reported. The purpose of this study was to determine the three dimensional surface topographic features of the germinative membrane of the cyst and the brood capsule.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


2017 ◽  
Vol 23 (3) ◽  
pp. 661-667 ◽  
Author(s):  
Yue Li ◽  
Di Zhang ◽  
Ilker Capoglu ◽  
Karl A. Hujsak ◽  
Dhwanil Damania ◽  
...  

AbstractEssentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.


1990 ◽  
Vol 110 (4) ◽  
pp. 883-894 ◽  
Author(s):  
R Reichelt ◽  
A Holzenburg ◽  
E L Buhle ◽  
M Jarnik ◽  
A Engel ◽  
...  

Nuclear pore complexes (NPCs) prepared from Xenopus laevis oocyte nuclear envelopes were studied in "intact" form (i.e., unexposed to detergent) and after detergent treatment by a combination of conventional transmission electron microscopy (CTEM) and quantitative scanning transmission electron microscopy (STEM). In correlation-averaged CTEM pictures of negatively stained intact NPCs and of distinct NPC components (i.e., "rings," "spoke" complexes, and "plug-spoke" complexes), several fine structural features arranged with octagonal symmetry about a central axis could reproducibly be identified. STEM micrographs of unstained/freeze-dried intact NPCs as well as of their components yielded comparable but less distinct features. Mass determination by STEM revealed the following molecular masses: intact NPC with plug, 124 +/- 11 MD; intact NPC without plug, 112 +/- 11 MD; heavy ring, 32 +/- 5 MD; light ring, 21 +/- 4 MD; plug-spoke complex, 66 +/- 8 MD; and spoke complex, 52 +/- 3 MD. Based on these combined CTEM and STEM data, a three-dimensional model of the NPC exhibiting eightfold centrosymmetry about an axis perpendicular to the plane of the nuclear envelope but asymmetric along this axis is proposed. This structural polarity of the NPC across the nuclear envelope is in accord with its well-documented functional polarity facilitating mediated nucleocytoplasmic exchange of molecules and particles.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yan Ye ◽  
Da Yin ◽  
Bin Wang ◽  
Qingwen Zhang

We report the synthesis of three-dimensional Fe3O4/graphene aerogels (GAs) and their application for the removal of arsenic (As) ions from water. The morphology and properties of Fe3O4/GAs have been characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and superconducting quantum inference device. The 3D nanostructure shows that iron oxide nanoparticles are decorated on graphene with an interconnected network structure. It is found that Fe3O4/GAs own a capacity of As(V) ions adsorption up to 40.048 mg/g due to their remarkable 3D structure and existence of magnetic Fe3O4nanoparticles for separation. The adsorption isotherm matches well with the Langmuir model and kinetic analysis suggests that the adsorption process is pseudo-second-ordered. In addition to the excellent adsorption capability, Fe3O4/GAs can be easily and effectively separated from water, indicating potential applications in water treatment.


2008 ◽  
Vol 47 (1) ◽  
pp. 394-399 ◽  
Author(s):  
Hirotoshi Furusho ◽  
Yumiko Mishima ◽  
Norihiro Kameta ◽  
Mitsutoshi Masuda ◽  
Ichiro Yamashita ◽  
...  

2019 ◽  
Vol 19 (11) ◽  
pp. 7404-7409 ◽  
Author(s):  
Aihua Jing ◽  
Gaofeng Liang ◽  
Hao Shi ◽  
Yixin Yuan ◽  
Quanxing Zhan ◽  
...  

Three-dimensional (3D) graphene with high specific surface area, excellent conductivity and designed porosity is essential for many practical applications. Herein, holey graphene oxide with nano pores was facilely prepared via a convenient mild defect-etching reaction and then fabricated to 3D nanostructures via a reduction method. Based on the 3D architectures, a novel enzymatic hydrogen peroxide sensor was successfully fabricated. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to characterize the 3D holey graphene oxide architectures (3DHGO). Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of 3DHGO at glassy carbon electrode (GCE). Excellent electrocatalytic activity to the reduction of H2O2 was observed, and a linear range of 5.0×10-8~5.0×10-5 M with a detection limit of 3.8×10-9 M was obtained. These results indicated that 3DHGO have potential as electrochemical biosensors.


2014 ◽  
Vol 47 (5) ◽  
pp. 1729-1735 ◽  
Author(s):  
Xin Nie ◽  
Yimin Guan ◽  
Dongshan Zhao ◽  
Yu Liu ◽  
Jianian Gui ◽  
...  

The crystallographic orientation relationships (ORs) of precipitated β-Mg2Sn particles in Mg–9.76 wt% Sn alloy aged at 573 K for 5 h, corresponding to its peak hardness, were investigated by advanced transmission electron microscopy (TEM). OR-3 of (110)β//(0001)αand [\overline 111]β//[1\overline 210]αand OR-4 of (110)β//(0001)αand [001]β//[2\overline 1\overline 10]αare the key ORs of β-Mg2Sn particles in the alloy. The proportions of β-Mg2Sn particles exhibiting OR-3 and OR-4 were determined as 75.1 and 24.3%, respectively. Crystallographic factors determined the predominance of OR-3 in the precipitated β-Mg2Sn particles. This mechanism was analyzed by a three-dimensional invariant line model constructed using a transformation matrix in reciprocal space. Models of the interface of precipitated β-Mg2Sn and the α-Mg matrix were constructedviahigh-resolution TEM and atomic resolution high-angle annular dark-field scanning TEM.


Sign in / Sign up

Export Citation Format

Share Document