Search for Vigna species conferring resistance to Mungbean yellow mosaic virus in mungbean

2014 ◽  
Vol 13 (2) ◽  
pp. 162-167 ◽  
Author(s):  
M. Sudha ◽  
A. Karthikeyan ◽  
V. G. Shobhana ◽  
P. Nagarajan ◽  
M. Raveendran ◽  
...  

Mungbean yellow mosaic virus (MYMV) is a disastrous pathogen of mungbean. It is widespread in most of southern India and no complete resistance has been identified among its commercial cultivars. Two isolates of MYMV, representing its diversity, were used to assess and characterize the susceptibility reaction of all the three species of Vigna. The seeds were agroinoculated with the virus and the presence of the viral DNA was confirmed after 12 d by reverse transcriptase-polymerase chain reaction (RT-PCR) analysis after which the plants were monitored for the expression of symptoms. All of the 20 accessions of Vigna radiata and ten accessions of Vigna mungo were systemically infected with MYMV, and they all produced typical symptoms. On the other hand, the 24 accessions of Vigna umbellata were found to be resistant to both the isolates. For additional affirmation, three representative accessions of V. radiata and V. mungo and all the accessions of V. umbellata were agroinoculated, and quantitative RT-PCR was performed for the quantitative detection of the MYMV. The mRNA transcripts of MYMV were detected in V. radiata and V. mungo plants but not in the V. umbellata plants. Researching the molecular basis of the resistance in V. umbellate against MYMV might definitely be very constructive for developing resistant varieties of mungbean on a commercial scale. This genetic quality offering resistance to MYMV could also be incorporated into V. radiata/V. mungo by means of interspecific crosses.

Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 622 ◽  
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Aditya Pratap ◽  
Rakesh Pandey ◽  
Shalini Purwar ◽  
...  

Yellow mosaic disease (YMD) affects several types of leguminous crops, including the Vigna species, which comprises a number of commercially important pulse crops. YMD is characterized by the formation of a bright yellow mosaic pattern on the leaves; in severe forms, this pattern can also be seen on stems and pods. This disease leads to tremendous yield losses, even up to 100%, in addition to deterioration in seed quality. Symptoms of this disease are similar among affected plants; YMD is not limited to mungbean (Vigna radiata L. Wilczek) and also affects other collateral and alternate hosts. In the last decade, rapid advancements in molecular detection techniques have been made, leading to an improved understanding of YMD-causing viruses. Three distinct bipartite begomoviruses, namely, Mungbean Yellow Mosaic India Virus (MYMIV), Mungbean Yellow Mosaic Virus (MYMV), and Horsegram Yellow Mosaic Virus (HgYMV), are known to cause YMD in Vigna spp. Vigna crops serve as an excellent protein source for vegetarians worldwide; moreover, they aid in improving soil health by fixing atmospheric nitrogen through a symbiotic association with Rhizobium bacteria. The loss in the yield of these short-duration crops due to YMD, thus, needs to be checked. This review highlights the discoveries that have been made regarding various aspects of YMD affecting mungbean, including the determination of YMD-causing viruses and strategies used to develop high-yielding YMD-resistant mungbean varieties that harness the potential of related Vigna species through the use of different omics approaches.


Author(s):  
K. Kamesh Krishnamoorthy ◽  
V. G. Malathi ◽  
P. Renukadevi ◽  
S. Mohan Kumar ◽  
M. Raveendran ◽  
...  

The yellow mosaic disease of blackgram caused by Mungbean yellow mosaic virus has emerged as a serious threat to pulses production especially in the South Eastern Asia.  Seed borne nature of MYMV in blackgram seeds was determined using the seeds harvested from a MYMV resistant (either VBN-6 or VBN-8) and susceptible blackgram (CO-5) varieties grown in three different agroclimatic zones of Tamil Nadu in India for three consecutive cropping seasons namely, Rabi 2018 (October- December), Summer 2019 (March-May) and Kharif 2019 (June- August) at three different time intervals viz., 20, 40 and 60 days after sowing (DAS). Seed borne nature of MYMV was observed only in the susceptible variety CO-5 and was absent in the   resistant varieties. Transmission of MYMV from infected plant to seeds was observed in all the three parts of the seeds viz., seed coat, cotyledon and embryo. Seeds from infected plants also showed abnormalities like shrinking, discolouration, ill filling inside pods and misshapen appearance.


Author(s):  
Prince Lekhi ◽  
R. K. Gill ◽  
Satinder Kaur ◽  
T. S. Bains

Vigna radiata genotypes viz., SML 668 and SML 832 and V. mungo genotypes viz., Mash 114 and Mash 218 were crossed in all possible combinations during summer 2015 to generate F1 hybrids. Interspecific hybridization was attempted by using V. radiata genotypes as female parent. Pod set percentage varied from 5.5 percent (SML 832 x Mash 218) to 24.1 percent (SML 832 x Mash 114). The germination percentage ranged from 14.29 to 30.56. Maximum pollen fertility was observed in cross SML 668 x Mash 114 (28.36 percent) followed by SML 668 x Mash 218 (27.03 percent), SML 832 x Mash 218 (24.32 percent) and minimum in SML 832 x Mash 114 (22.59 percent).The purity of hybrids were tested through microsatellite markers. For parental polymorphism, microsatellite markers were selected from related Vigna species such as Vigna unguiculata, Vigna radiata and Vigna mungo. Out of 84 markers used, 46 were polymorphic i.e 54.76 per cent polymorphism between parents. These polymorphic markers were used for confirmation of hybrids produced from different crosses. All the F1 plants gave resistant reaction to Mungbean yellow mosaic virus (MYMV) indicating the introgression of resistance gene(s) from V. mungo to V. radiata.


Plant Disease ◽  
2005 ◽  
Vol 89 (10) ◽  
pp. 1129-1129 ◽  
Author(s):  
R. Krause-Sakate ◽  
A. S. Jadão ◽  
A. C. Firmino ◽  
M. A. Pavan ◽  
F. M. Zerbini ◽  
...  

Sequiviruses are isometric aphidborne plant viruses. Dandelion yellow mosaic virus (DaYMV), genus Sequivirus, was isolated from dandelion and lettuce in Europe. Lettuce mottle virus (LeMoV), a putative sequivirus, is often found in mixed infections with Lettuce mosaic virus (LMV) in Brazil (3). DaYMV, LeMoV and LMV cause similar mosaics in field-grown lettuce. Differences in biology and sequence suggest that DaYMV and LeMoV are distinct species (2). Forty-two and 101 lettuce samples with mosaic symptoms collected from two locations near Santiago during a survey of lettuce viruses in Chile in 2002 and 2003, respectively, were analyzed for the presence of LeMoV using reverse transcription polymerase chain reaction (RT-PCR). Total RNA was extracted (1) and used for RT-PCR with the specific LeMoV primers pairs Lmo3 (5′ ACATGAGCACTAGTGAGG 3′) and Lmo4 (5′ AGATAGAGCCGTCT GGCG 3′) (2). One of the 42 and three of the 101 samples produced the expected 300-bp fragment. Isometric particles of 30 nm diameter, typical of a sequivirus, were visualized by transmission electron microscopy. These samples were tested using RT-PCR for the presence of LMV and Cucumber mosaic virus (CMV), but no mixed infections were observed. One isolate, Ch36, was reamplified with the degenerate primer pairs DALE 1 (5′ GARTTCAACATGCACGCCAG 3′) and DALE 2 (5′ TTTTTCTCCCCATYCGTCAT 3′) which amplify part of the putative replicase gene (2) and produced a 563-bp fragment that was cloned on pGEM-T Easy (Promega, Madison, WI) and sequenced. The Ch36 product (EMBL Accession No. AM039965) showed 97% amino acid identity with LeMoV from Brazil, 79% with DaYMV, 72% with the sequivirus Parsnip yellow fleck virus, and 34% with the waikavirus Maize chlorotic dwarf virus. To our knowledge, this is the first report of a sequivirus in field lettuce in Chile, and although the virus was found at low incidence, this report extends the range of LeMoV to the western side of the Cordillera de Los Andes. The impact of LeMoV needs to be further analyzed in Chile, Brazil, and possibly other South American countries. References: (1) Y. D. Bertheau et al. DNA amplification by polymerase chain reaction (PCR) 1998. In: Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica on potatoes. M. C. N. Perombelon and J. M. van der Wolff, eds. Scott. Crop Res. Inst. Occasional Publ., Dundee, 1998. (2) A. S. Jadão. Caracterização parcial e desenvolvimento de oligonucleotídeos específicos para detecção de sequivirus infectando alface. Ph.D. thesis. FCA-UNESP-Botucatu, Brazil, 2004. (3) O. Stangarlin et al. Plant Dis. 84:490, 2000.


Plant Disease ◽  
2018 ◽  
Vol 102 (11) ◽  
pp. 2324-2329 ◽  
Author(s):  
Cheng-Ping Kuan ◽  
Wen-Shi Chang ◽  
Tso-Chi Yang

In this study, we describe multiplex polymerase chain reaction (PCR) coupled with the LiquiChip assay for the identification of Zucchini yellow mosaic virus, Cucumber green mottle mosaic virus, and Cucumber mosaic virus by coamplification with plant mRNA as an internal control. Multiplex reverse-transcription (RT)-PCR products were subjected to allele-specific primer extension, then hybridized to carboxylated microspheres with unique fluorescent identifiers followed by detection using the LiquiChip 200 workstation. This assay is highly specific for distinguishing individual viruses from a mixed viral population and is 10 times more sensitive than multiplex RT-PCR. In addition, the establishment of this method enabled the detection of cucurbit viruses in field samples.


Plant Disease ◽  
2005 ◽  
Vol 89 (1) ◽  
pp. 105-105 ◽  
Author(s):  
M. A. Achon ◽  
M. Marsiñach ◽  
C. Ratti ◽  
C. Rubies-Autonell

Recently, the presence of Barley mild mosaic virus (BaMMV) and the weakly serological detection of Barley yellow mosaic virus (BaYMV) were reported in Spain (1); both viruses are members of the genus Bymovirus (family Potyviridae). Random and symptomatic surveys were conducted during February and March of 2003 in barley fields in northeastern Spain to determine the occurrence of BaMMV and BaYMV. Leaves from 316 samples collected in 15 fields were analyzed using enzyme-linked immunosorbent assay (ELISA) with commercial antisera specific for BaYMV and BaMMV (Loewe Biochemica, Munich) as well as antisera against both viruses (provided by T. Klumen). Positive ELISA samples were further analyzed using reverse transcription-polymerase chain reaction (RT-PCR) with specific primers that amplify 445 bp of BaMMV and 433 bp of BaYMV (2). Complete agreement was observed between the ELISA and RT-PCR results. Mixed infections of BaYMV and BaMMV were detected in 10 samples, BaYMV in 5 samples and BaMMV in 3 samples. Samples positive for both viruses that exhibited clear mosaic symptoms were collected in two fields. RT-PCR products from five BaYMV-infected samples were cloned and sequenced and showed 96 to 98% identity to BaYMV isolates previously reported from Europe (Genbank Accession Nos. AJ1515479-85 and X95695-7) and 92 to 95% identity with isolates reported from Asia (GenBank Accession Nos. AB023585-96, AJ132268, AJ224619-22, AJ224624-28, AF536944-46, AF536948-58, D01091, D00544, and Z24677). Sequence identity of Spanish isolates were 96 to 99%. To our knowledge, this is the first report of BaYMV infecting barley in Spain and illustrates the association of both Bymoviruses infecting barley. References: (1) M. A. Achon et al. Plant Dis. 87:1004, 2003. (2) D. Hariri et al. Eur. J. Plant Pathol. 106:365, 2000.


2021 ◽  
Vol 18 (3) ◽  
pp. 467-478
Author(s):  
Ashwini Talakayala ◽  
Veerapaneni Bindu Prathyusha ◽  
Dhanasekar Divya ◽  
Srinivas Ankanagari ◽  
Mallikarjuna Garladinne

Mungbean yellow mosaic virus (MYMV) causes massive crop losses in green gram. MYMV is a member of begomovirus with bipartite genome comprising DNA-A and DNA-B components, which is transmitted by whiteflies. Cloning and preparation of infectious clone is very much essential for screening germplasm or transgenic material of pulse crops since viruliferous whiteflies may not be available throughout the year. In the current work, we have amplified rolling circle mediated viral genome of MYMV using Φ29 DNA polymerase. The amplified products was digested and cloned into the plant expression vector pCAMBIA2301.The cloned constructs was then transformed into Agrobacterium LBA4404 through freeze thaw method. Further, three viral transmission techniques including mechanical rubbing, Agroinfiltration and Agroinoculation, were employed for assessing the mosaic symptoms in green gram. The molecular confirmation through polymerase chain reaction (PCR) indicated that the yellow mosaic symptoms were formed due to infectivity of MYMV in the green gram.


Author(s):  
Pandiyan M ◽  

Mungbean Yellow mosaic disease is a main destructing viral disease in mungbean caused by Mungbean yellow mosaic virus (MYMV) which leads to severe sometime 100 percent yield reduction and it necessitates for developing MYMV resistant lines. The present investigation was carried out with an objective of evolution of MYMV resistant progenies through incorporating wide genes of same genera. An attempt was made between V. radiata x V. umbellata crosses. This agroinoculation technique was employed to examine the F2 individuals, which were derived from a cross between VMGG012-005 (Moderately susceptible) x VGGru1 (resistant homozygous advanced line from Vigna radiata x Vigna umbellata derivative used as MYMV donor) to screen for the MYMV resistant progenies. In the field condition, MYMV infection can be evaluated by MYMV disease rating scale (1-9).


2003 ◽  
Vol 93 (12) ◽  
pp. 1478-1484 ◽  
Author(s):  
C. Desbiez ◽  
A. Gal-On ◽  
M. Girard ◽  
C. Wipf-Scheibel ◽  
H. Lecoq

Zucchini yellow mosaic virus (ZYMV, Potyvirus) is a very damaging cucurbit virus worldwide. Interspecific crosses with resistant Cucurbita moschata have led to the release of “resistant” zucchini squash (C. pepo) F1 hybrids. However, although the resistance is almost complete in C. moschata, the commercial C. pepo hybrids are only tolerant. ZYMV evolution toward increased aggressiveness on tolerant hybrids was observed in the field and was obtained experimentally. Sequence comparisons and recombination experiments revealed that a point mutation in the P3 protein of ZYMV was enough to induce tolerance breaking. Competition experiments were performed between quasi-isogenic wild-type, and aggressive variants of ZYMV distinguished by monoclonal antibodies. The aggressive mutants were more fit than wild-type strains in mixed infections of tolerant zucchini, but they presented a drastic fitness loss in mixed infections of susceptible zucchini or melon. Thus, the ability to induce severe symptoms in tolerant zucchini is related to a genetic load in susceptible zucchini, but also on other susceptible hosts. This represents the first quantitative study of the fitness cost associated with tolerance breaking for a plant virus. Thus, although easily broken, the tolerance might prove durable in some conditions if the aggressive variants are counterselected in susceptible crops.


Author(s):  
Sudeep Pandey ◽  
T.R. Girish ◽  
S. Basavaraj ◽  
A.S. Padmaja ◽  
N. Nagaraju

Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.


Sign in / Sign up

Export Citation Format

Share Document