The phototoxicity of some 1,3-butadienes and related thiophenes against larvae of the mosquito Aedes aegypti and of the fruit fly Drosophila melanogaster

1983 ◽  
Vol 4 (04) ◽  
pp. 377-381 ◽  
Author(s):  
Jacques Kagan ◽  
Jean-Pierre Beny ◽  
Ging Chan ◽  
Som N. Dhawan ◽  
Jeffery A. Jaworski ◽  
...  
2020 ◽  
Vol 21 (20) ◽  
pp. 7520
Author(s):  
Lucky R. Runtuwene ◽  
Shuichi Kawashima ◽  
Victor D. Pijoh ◽  
Josef S. B. Tuda ◽  
Kyoko Hayashida ◽  
...  

Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


1993 ◽  
Vol 155 (2) ◽  
pp. 558-568 ◽  
Author(s):  
Yonggu Lin ◽  
Martha T. Hamblin ◽  
Marten J. Edwards ◽  
Carolina Barillas-Mury ◽  
Michael R. Kanost ◽  
...  

2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199019 ◽  
Author(s):  
Iris Stappen ◽  
Juergen Wanner ◽  
Nurhayat Tabanca ◽  
Ulrich R. Bernier ◽  
Paul E. Kendra

Blue tansy essential oil (BTEO) ( Tanacetum annuum L.) was analyzed by GC-MS and GC-FID using two different capillary column stationary phases. Sabinene (14.0%), camphor (13.6%), myrcene (8.0%), β-pinene (7.7%), and chamazulene (6.9%) were the main components using an SE52 column (non-polar). On a polar CW20M phase column, sabinene (15.1%), camphor (14.4%), α-phellandrene (7.9%), β-pinene (7.7%), and myrcene (6.9%) were the most abundant compounds. To assess the oil for potential applications in integrated pest management strategies, behavioral bioassays were conducted to test for repellency against yellow fever mosquito Aedes aegypti, and for attractant activity for Mediterranean fruit fly Ceratitis capitata. Results showed that BTEO was not effective in repelling Ae. aegypti (minimum effective dosage [MED]: 0.625 ± 0.109 mg/cm2 compared with the standard insect repellent DEET (N,N-diethyl-3-methylbenzamide). In assays with male C. capitata, BTEO displayed mild attraction compared with two positive controls (essential oils from tea tree Melaleuca alternifolia and African ginger bush Tetradenia riparia). Additional studies are needed to identify the specific attractant chemicals in BTEO and to determine if they confer a synergistic effect when combined with other known attractants for C. capitata. To the best of our knowledge, this study represents the first investigation of BTEO for repellency against the mosquito vector Ae. aegypti and for attractancy to C. capitata, a major agricultural pest worldwide.


1999 ◽  
Vol 19 (2) ◽  
pp. 1159-1170 ◽  
Author(s):  
Madeline A. Crosby ◽  
Chaya Miller ◽  
, Tamar Alon ◽  
Kellie L. Watson ◽  
C. Peter Verrijzer ◽  
...  

ABSTRACT The genes of the trithorax group (trxG) inDrosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira(mor) and its molecular characterization. morencodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex.


2005 ◽  
Vol 83 (2) ◽  
pp. 368-371 ◽  
Author(s):  
Mark J Fitzpatrick ◽  
Evelyn Szewczyk

Denticles are small projections on the underside of larval fruit flies that are used to grip the substrate while crawling. Previous studies have shown that (i) there is natural variation in denticle number and pattern between Drosophila melanogaster (Meigen, 1830) and several closely related species and (ii) mutations affecting denticle morphology have negative effects on locomotory performance. We hypothesized that there would be a correlation between denticle number and locomotory performance within populations of D. melanogaster. Despite finding considerable variation in denticle number, we found no correlation between denticle number and three measurements of larval locomotion: speed, acceleration, and absolute turning rate.


Sign in / Sign up

Export Citation Format

Share Document