scholarly journals The Ying and Yang of the M 83 Nucleus

2009 ◽  
Vol 5 (S267) ◽  
pp. 121-121
Author(s):  
Damián Mast ◽  
Rubén J. Díaz ◽  
Horacio A. Dottori ◽  
María P. Agüero ◽  
Irapuán Rodrigues ◽  
...  

The spiral galaxy M 83, an SB(rs)b at only 4.5 Mpc, is a privileged case for study of the detailed physics on spatial scales of a tenth of a parsec. With 3-D spectroscopic observations using CIRPASS on Gemini-S, we studied the ionized gas properties in J-band with spatial resolution of 0.″5 (Figure 1). The Paβ velocity field shows two dynamical centers, neither of them coincident with the bulge center, identified with the optical nucleus (ON) and the hidden nucleus (HN), with masses, within a radius of 10 pc, of MON = (1.8±0.4)× 107M⊙ and MHN = (1.0±0.4)× 107M⊙. Using the Paβ equivalent width together with population synthesis models, we are able to estimate the ages of both mass concentrations, TON = 8 Myr and THN =6–7 Myr. Adding complexity to this puzzling scenario, we used GMOS+Gemini imaging and spectroscopy to study the radio source J133658.3–295105 (Dottori et al. 2008) and find that Hα emission at the position of this source is redshifted by ~130 km s−1 with respect to an M 83 H II region, leading us to face the possibility of that we are witnessing the ejection of an object by gravitational recoil from the M 83 nucleus. A fit to the X-ray spectrum obtained Chandra supports the association between this source and the disk of M 83 by the presence of the Fe Kα line at 6.7 keV.

Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


1999 ◽  
Vol 193 ◽  
pp. 480-481
Author(s):  
Vanessa C. Galarza ◽  
Donald R. Garnett ◽  
You-Hua Chu

We present results from new HST imaging and spectroscopy of the peculiar Large Magellanic Cloud H II region N 44C and its ionizing star. While this nebula exhibits strong He II recombination emission, the source of the He+ ionizing photons has not been found. The UV spectrum of the ionizing star suggests an approximate spectral class of 07–08; the UV Si IV, He II, and N IV features do not show P-Cygni profiles, indicating that the ionizing star is not a supergiant. No companion star has yet been detected. Ground-based and HST optical spectroscopy of the ionized gas shows that the nebular abundances of C, N, O and He are not anomalous relative to other LMC H II regions, suggesting that no previous WR/SN companion has disappeared. Echelle spectroscopy has also ruled out the presence of high velocity shocked gas. Deep ROSAT imaging shows no X-ray point source in this location. The “fossil X-ray binary” hypothesis of Pakull & Motch (1989) remains the best explanation for the ionization of this nebula; however, convincing evidence for this hypothesis remains elusive.


2018 ◽  
Vol 619 ◽  
pp. A74 ◽  
Author(s):  
Giacomo Venturi ◽  
Emanuele Nardini ◽  
Alessandro Marconi ◽  
Stefano Carniani ◽  
Matilde Mingozzi ◽  
...  

Context. Ionized outflows, revealed by broad asymmetric wings of the [O III] λ5007 line, are commonly observed in active galactic nuclei (AGN) but the low intrinsic spatial resolution of the observations has generally prevented a detailed characterization of their properties. The MAGNUM survey aims at overcoming these limitations by focusing on the nearest AGN, including NGC 1365, a nearby Seyfert galaxy (D ∼ 17 Mpc), hosting a low-luminosity active nucleus (Lbol ∼ 2 × 1043 erg s−1). Aims. We want to obtain a detailed picture of the ionized gas in the central ∼5 kpc of NGC 1365 in terms of physical properties, kinematics, and ionization mechanisms. We also aim to characterize the warm ionized outflow as a function of distance from the nucleus and its relation with the nuclear X-ray wind. Methods. We employed optical integral-field spectroscopic observations from VLT/MUSE to investigate the warm ionized gas and Chandra ACIS-S X-ray data for the hot highly-ionized phase. We obtained flux, kinematic, and diagnostic maps of the optical emission lines, which we used to disentangle outflows from gravitational motions in the disk and measure the gas properties down to a spatial resolution of ∼70 pc. We then performed imaging spectroscopy on Chandra ACIS-S data guided by the matching with MUSE maps. Results. The [O III] emission mostly traces a kpc-scale biconical outflow ionized by the AGN having velocities up to ∼200 km s−1. Hα emission traces instead star formation in a circumnuclear ring and along the bar, where we detect non-circular streaming gas motions. Soft X-rays are predominantly due to thermal emission from the star-forming regions, but we manage to isolate the AGN photoionized component which nicely matches the [O III] emission. The mass outflow rate of the extended ionized outflow is similar to that of the nuclear X-ray wind and then decreases with radius, implying that the outflow either slows down or that the AGN activity has recently increased. However, the hard X-ray emission from the circumnuclear ring suggests that star formation might in principle contribute to the outflow. The integrated mass outflow rate, kinetic energy rate, and outflow velocity are broadly consistent with the typical relations observed in more luminous AGN.


Author(s):  
A. D. Romig ◽  
J. R. Michael

High spatial resolution x-ray microanalysis in the analytical electron microscope (AEM) describes a technique by which chemical composition can be determined on spatial scales of less than 50 nm. Dependent upon the size of the incident probe, the energy (voltage) of the beam, the average atomic number of the material being analyzed, and the thickness of the specimen at the point of analysis it is possible to measure uniquely the composition of a region 2-20 nm in diameter. Conventional thermionic (tungsten or LaB6) AEMs can attain direct spatial resolutions as small as 20 nm, while field emission (PEG) AEM's can attain direct spatial resolutions approaching 2 nm. Recently, efforts have been underway to extract compositional information on a finer spatial scale by using massively parallel Monte Carlo electron trajectory simulations coupled with AEM measurements. By deconvolving the measured concentration profile with the calculated x-ray generation profile it is possible to extract compositional information at near atomic resolution.


Author(s):  
R. Hutchings ◽  
I.P. Jones ◽  
M.H. Loretto ◽  
R.E. Smallman

There is increasing interest in X-ray microanalysis of thin specimens and the present paper attempts to define some of the factors which govern the spatial resolution of this type of microanalysis. One of these factors is the spreading of the electron probe as it is transmitted through the specimen. There will always be some beam-spreading with small electron probes, because of the inevitable beam divergence associated with small, high current probes; a lower limit to the spatial resolution is thus 2αst where 2αs is the beam divergence and t the specimen thickness.In addition there will of course be beam spreading caused by elastic and inelastic interaction between the electron beam and the specimen. The angle through which electrons are scattered by the various scattering processes can vary from zero to 180° and it is clearly a very complex calculation to determine the effective size of the beam as it propagates through the specimen.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
J. Zhang ◽  
D.B. Williams ◽  
J.I. Goldstein

Analytical sensitivity and spatial resolution are important and closely related factors in x-ray microanalysis using the AEM. Analytical sensitivity is the ability to distinguish, for a given element under given conditions, between two concentrations that are nearly equal. The analytical sensitivity is directly related to the number of x-ray counts collected and, therefore, to the probe current, specimen thickness and counting time. The spatial resolution in AEM analysis is determined by the probe size and beam broadening in the specimen. A finer probe and a thinner specimen give a higher spatial resolution. However, the resulting lower beam current and smaller X-ray excitation volume degrade analytical sensitivity. A compromise must be made between high spatial resolution and an acceptable analytical sensitivity. In this paper, we show the necessity of evaluating these two parameters in order to determine the low temperature Fe-Ni phase diagram.A Phillips EM400T AEM with an EDAX/TN2000 EDS/MCA system and a VG HB501 FEG STEM with a LINK AN10 EDS/MCA system were used.


Author(s):  
Matthew T. Johnson ◽  
Ian M. Anderson ◽  
Jim Bentley ◽  
C. Barry Carter

Energy-dispersive X-ray spectrometry (EDS) performed at low (≤ 5 kV) accelerating voltages in the SEM has the potential for providing quantitative microanalytical information with a spatial resolution of ∼100 nm. In the present work, EDS analyses were performed on magnesium ferrite spinel [(MgxFe1−x)Fe2O4] dendrites embedded in a MgO matrix, as shown in Fig. 1. spatial resolution of X-ray microanalysis at conventional accelerating voltages is insufficient for the quantitative analysis of these dendrites, which have widths of the order of a few hundred nanometers, without deconvolution of contributions from the MgO matrix. However, Monte Carlo simulations indicate that the interaction volume for MgFe2O4 is ∼150 nm at 3 kV accelerating voltage and therefore sufficient to analyze the dendrites without matrix contributions.Single-crystal {001}-oriented MgO was reacted with hematite (Fe2O3) powder for 6 h at 1450°C in air and furnace cooled. The specimen was then cleaved to expose a clean cross-section suitable for microanalysis.


2020 ◽  
Vol 15 (S359) ◽  
pp. 391-395
Author(s):  
Sebastian F. Sánchez ◽  
Carlos Lopez Cobá

AbstractWe summarize here some of the results reviewed recently by Sanchez (2020) comprising the advances in the comprehension of galaxies in the nearby universe based on integral field spectroscopic galaxy surveys. In particular we explore the bimodal distribution of galaxies in terms of the properties of their ionized gas, showing the connection between the star-formation (quenching) process with the presence (absence) of molecular gas and the star-formation efficiency. We show two galaxy examples that illustrates the well known fact that ionization in galaxies (and the processes that produce it), does not happen monolitically at galactic scales. This highlight the importance to explore the spectroscopic properties of galaxies and the evolutionary processes unveiled by them at different spatial scales, from sub-kpc to galaxy wide.


Sign in / Sign up

Export Citation Format

Share Document