scholarly journals Preface: Focus Meeting 10 - Stellar explosions in an ever-changing environment

2015 ◽  
Vol 11 (A29B) ◽  
pp. 203-205
Author(s):  
Christina C. Thöne ◽  
Lise Christensen ◽  

This focus meeting builds on a small conference “Galaxies meet GRBs at Cabo de Gata” held in September 2013 in Spain, which, for the first time, brought together people from the GRB and starburst communities and proved to be a great success. Focus Meeting 10 at the XXIX IAU GA was the continuation of this interdisciplinary collaboration, supported by Division J (Galaxies and Cosmology), Division D (High Energy Phenomena and Fundamental Physics) and Division G Working Group “Massive Stars”.

Author(s):  
L. -M. Peng ◽  
M. J. Whelan

In recent years there has been a trend in the structure determination of reconstructed surfaces to use high energy electron diffraction techniques, and to employ a kinematic approximation in analyzing the intensities of surface superlattice reflections. Experimentally this is motivated by the great success of the determination of the dimer adatom stacking fault (DAS) structure of the Si(111) 7 × 7 reconstructed surface.While in the case of transmission electron diffraction (TED) the validity of the kinematic approximation has been examined by using multislice calculations for Si and certain incident beam directions, far less has been done in the reflection high energy electron diffraction (RHEED) case. In this paper we aim to provide a thorough Bloch wave analysis of the various diffraction processes involved, and to set criteria on the validity for the kinematic analysis of the intensities of the surface superlattice reflections.The validity of the kinematic analysis, being common to both the TED and RHEED case, relies primarily on two underlying observations, namely (l)the surface superlattice scattering in the selvedge is kinematically dominating, and (2)the superlattice diffracted beams are uncoupled from the fundamental diffracted beams within the bulk.


Author(s):  
Richard Healey

The metaphor that fundamental physics is concerned to say what the natural world is like at the deepest level may be cashed out in terms of entities, properties, or laws. The role of quantum field theories in the Standard Model of high-energy physics suggests that fundamental entities, properties, and laws are to be sought in these theories. But the contextual ontology proposed in Chapter 12 would support no unified compositional structure for the world; a quantum state assignment specifies no physical property distribution sufficient even to determine all physical facts; and quantum theory posits no fundamental laws of time evolution, whether deterministic or stochastic. Quantum theory has made a revolutionary contribution to fundamental physics because its principles have permitted tremendous unification of science through the successful application of models constructed in conformity to them: but these models do not say what the world is like at the deepest level.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3854
Author(s):  
Hugo Martínez Sánchez ◽  
George Hadjipanayis ◽  
Germán Antonio Pérez Alcázar ◽  
Ligia Edith Zamora Alfonso ◽  
Juan Sebastián Trujillo Hernández

In this work, the mechanochemical synthesis method was used for the first time to produce powders of the nanocrystalline Nd1.1Fe10CoTi compound from Nd2O3, Fe2O3, Co and TiO2. High-energy-milled powders were heat treated at 1000 °C for 10 min to obtain the ThMn12-type structure. Volume fraction of the 1:12 phase was found to be as high as 95.7% with 4.3% of a bcc phase also present. The nitrogenation process of the sample was carried out at 350 °C during 3, 6, 9 and 12 h using a static pressure of 80 kPa of N2. The magnetic properties Mr, µ0Hc, and (BH)max were enhanced after nitrogenation, despite finding some residual nitrogen-free 1:12 phase. The magnetic values of a nitrogenated sample after 3 h were Mr = 75 Am2 kg–1, µ0Hc = 0.500 T and (BH)max = 58 kJ·m–3. Samples were aligned under an applied field of 2 T after washing and were measured in a direction parallel to the applied field. The best value of (BH)max~114 kJ·m–3 was obtained for 3 h and the highest µ0Hc = 0.518 T for 6 h nitrogenation. SEM characterization revealed that the particles have a mean particle size around 360 nm and a rounded shape.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanming Cai ◽  
Jiaju Fu ◽  
Yang Zhou ◽  
Yu-Chung Chang ◽  
Qianhao Min ◽  
...  

AbstractSingle-atom catalysts (SACs) are promising candidates to catalyze electrochemical CO2 reduction (ECR) due to maximized atomic utilization. However, products are usually limited to CO instead of hydrocarbons or oxygenates due to unfavorable high energy barrier for further electron transfer on synthesized single atom catalytic sites. Here we report a novel partial-carbonization strategy to modify the electronic structures of center atoms on SACs for lowering the overall endothermic energy of key intermediates. A carbon-dots-based SAC margined with unique CuN2O2 sites was synthesized for the first time. The introduction of oxygen ligands brings remarkably high Faradaic efficiency (78%) and selectivity (99% of ECR products) for electrochemical converting CO2 to CH4 with current density of 40 mA·cm-2 in aqueous electrolytes, surpassing most reported SACs which stop at two-electron reduction. Theoretical calculations further revealed that the high selectivity and activity on CuN2O2 active sites are due to the proper elevated CH4 and H2 energy barrier and fine-tuned electronic structure of Cu active sites.


1926 ◽  
Vol 22 (3) ◽  
pp. 301-307
Author(s):  
S. S. Zabolotny

Obtained for the first time back in 1895 by Marchoux and Sclavo and then experimentally tested by Sclavo and Jobernheim in a large number of very convincing experiments, the anthrax serum was used with great success in veterinary practice, both in prophylactic (together with the vaccine) and in medicinal purposes.


Batteries ◽  
2018 ◽  
Vol 4 (4) ◽  
pp. 60 ◽  
Author(s):  
Caihong Liu ◽  
Leon Shaw

In this study, we have proposed a novel concept of hybrid flow batteries consisting of a molten Na-Cs anode and an aqueous NaI catholyte separated by a NaSICON membrane. A number of carbonaceous electrodes are studied using cyclic voltammetry (CV) for their potentials as the positive electrode of the aqueous NaI catholyte. The charge transfer impedance, interfacial impedance and NaSICON membrane impedance of the Na-Cs ‖ NaI hybrid flow battery are analyzed using electrochemical impedance spectroscopy. The performance of the Na-Cs ‖ NaI hybrid flow battery is evaluated through galvanostatic charge/discharge cycles. This study demonstrates, for the first time, the feasibility of the Na-Cs ‖ NaI hybrid flow battery and shows that the Na-Cs ‖ NaI hybrid flow battery has the potential to achieve the following properties simultaneously: (i) An aqueous NaI catholyte with good cycle stability, (ii) a durable and low impedance NaSICON membrane for a large number of cycles, (iii) stable interfaces at both anode/membrane and cathode/membrane interfaces, (iv) a molten Na-Cs anode capable of repeated Na plating and stripping, and (v) a flow battery with high Coulombic efficiency, high voltaic efficiency, and high energy efficiency.


2007 ◽  
Vol 22 (5) ◽  
pp. 1200-1206 ◽  
Author(s):  
R. Malewar ◽  
K.S. Kumar ◽  
B.S. Murty ◽  
B. Sarma ◽  
S.K. Pabi

The present investigation reports for the first time a dramatic decrease in the sintering temperature of elemental W from the conventional temperature of ≥2500 °C to the modest temperature range of 1700–1790 °C by making the W powder nanostructured through high-energy mechanical milling (MM) prior to sintering. The crystallite size of the initial W powder charge with a particle size of 3–4 μm could be brought down to 8 nm by MM for 5 h in WC grinding media. Further milling resulted in a high level of WC contamination, which apparently was due to work hardening and the grain refinement of W. A sintered density as high as 97.4% was achieved by sintering cold, isostatically pressed nanocrystalline (8 nm) W powder at 1790 °C for 900 min. The microstructure of the sintered rods showed the presence of deformation bands, but no cracks, within a large number of W grains. The mechanical properties, when compared with the hardness and elastic modulus, of the sintered nano-W specimen were somewhat superior to those reported for the conventional sintered W.


2009 ◽  
Vol 5 (S268) ◽  
pp. 463-468
Author(s):  
Ko Nakamura ◽  
Takashi Yoshida ◽  
Toshikazu Shigeyama ◽  
Toshitaka Kajino

AbstractType Ic supernova (SN Ic) is the gravitational collapse of a massive star without H and He layers. It propels several solar masses of material to the typical velocity of 10,000 km/s, a very small fraction of the ejecta nearly to the speed of light. We investigate SNe Ic as production sites for the light elements Li, Be, and B, via the neutrino-process and spallations. As massive stars collapse, neutrinos are emitted in large numbers from the central remnants. Some of the neutrinos interact with nuclei in the exploding materials and mainly 7Li and 11B are produced. Subsequently, the ejected materials with very high energy impinge on the interstellar/circumstellar matter and spall into light elements. We find that the ν-process in the current SN Ic model produces a significant amount of 11B, consistent with observations if combined with B isotopes from the following spallation production.


Author(s):  
Frédéric Marin

Astronomical X-ray polarimetry was first explored in the end of the 60's by pioneering rocket instruments. The craze arising from the first discoveries on stellar and supernova remnant X-ray polarization led to the addition of X-ray polarimeters on-board of early satellites. Unfortunately, the inadequacy of the diffraction and scattering technologies required to measure polarization with respect to the constraints driven by X-ray mirrors and detectors, coupled to long integration times, slowed down the field for almost 40 years. Thanks to the development of new, highly sensitive, compact X-ray polarimeters in the beginning of the 2000's, the possibility to observe astronomical X-ray polarization is rising again and scientists are now ready to explore the high energy sky thanks to modern X-ray polarimeters. In the forthcoming years, several X-ray missions (both rockets, balloons and satellites) will open a new observational windows. A wind of renewal blows over the area of X-ray polarimetry and this paper presents for the first time a quantitative assessment, all based on scientific literature, of the growth of interest for astronomical X-ray polarimetry.


Sign in / Sign up

Export Citation Format

Share Document