scholarly journals The X-ray Light-Curves and CME onset of a M2.5 flare of July 6, 2006

2016 ◽  
Vol 12 (S328) ◽  
pp. 240-242
Author(s):  
J. E. Mendoza-Torres ◽  
J. E. Pérez-León

AbstractA M2.5 solar flare observed by RHESSI in the 6-100 keV range on July 6, 2006 led to a Coronal Mass Ejection (CME). Two compact sources at 12-100 keV are seen at the beginning of the flare, whose further evolution fits well in a loop. Also, time-profiles of the flare at radio wavelengths are compared. The X-ray light-curves at different bands in the 6-100 keV range and radio time profiles show some peaks superimposed on smooth variations. The aim of this work is to compare the X-ray light-curves, of fluxes integrated over the whole source, with the physical parameters of the sources of the flare. Yashiro and Gopalswamy (2009) have found that the fraction of flares that produce CME increases with the flare energy. Here, we look for the characteristics of an M2.5 flare that could make it a generator of a CME. The idea is, in future works, to look in the light-curves of similar flares at other stars for these features. It is found that the CME onset takes place around the time when an X-ray source at 12-25 keV of Chromospheric evaporation stagnates at the loop apex, before the main peak at the light-curve at 25-50 keV and at the radio emission curves. Probably, the amount of evaporated plasma could play some role in triggering the CME.

1989 ◽  
Vol 104 (1) ◽  
pp. 289-298
Author(s):  
Giovanni Peres

AbstractThis paper discusses the hydrodynamic modeling of flaring plasma confined in magnetic loops and its objectives within the broader scope of flare physics. In particular, the Palermo-Harvard model is discussed along with its applications to the detailed fitting of X-ray light curves of solar flares and to the simulation of high-resolution Caxix spectra in the impulsive phase. These two approaches provide complementary constraints on the relevant features of solar flares. The extension to the stellar case, with the fitting of the light curve of an X-ray flare which occurred on Proxima Centauri, demonstrates the feasibility of using this kind of model for stars too. Although the stellar observations do not provide the wealth of details available for the Sun, and, therefore, constrain the model more loosely, there are strong motivations to pursue this line of research: the wider range of physical parameters in stellar flares and the possibility of studying further the solar-stellar connection.


2019 ◽  
Vol 628 ◽  
pp. A79 ◽  
Author(s):  
J. H. M. M. Schmitt ◽  
P. Ioannidis ◽  
J. Robrade ◽  
S. Czesla ◽  
P. C. Schneider

We present short-cadence data of the ultra-active star AB Dor measured by the Transiting Exoplanet Survey Satellite (TESS). In the TESS light curves of AB Dor, we found numerous flare events in addition to time-variable rotational modulation with an amplitude of up to 7%. We identified eight superflares (releasing more than 1034 erg) and studied their morphologies and energetics. We compared these flares to both the most energetic solar flare seen in total solar irradiance measurements as well as to a very energetic flare on AB Dor observed by XMM-Newton, the superflare nature of which we also demonstrate. The total energy of both the solar flare and the event on AB Dor emitted in the optical exceed their respective X-ray outputs possibly by an order of magnitude, suggesting that the dominant energy loss of such flares actually occurs at optical wavelengths. Superflares are found to take place on AB Dor at a rate of about one per week, and due to the star’s proximity and brightness can be studied in excruciating detail. Thus the TESS data offer a superb possibility to study the frequency and energetics of superflare events for stars in the solar neighborhood and at large.


2020 ◽  
Vol 639 ◽  
pp. L5
Author(s):  
Dong Li ◽  
Song Feng ◽  
Wei Su ◽  
Yu Huang

Context. Very long-periodic pulsations during preflare phases (preflare-VLPs) have been detected in the full-disk solar soft X-ray (SXR) flux. They may be regarded as precursors to solar flares and may help us better understand the trigger mechanism of solar flares. Aims. In this Letter, we report a preflare-VLP event prior to the onset of an M1.1 circular-ribbon flare on 2015 October 16. It was simultaneously observed in Hα, SXR, and extreme ultraviolet (EUV) wavelengths. Methods. The SXR fluxes in 1−8 Å and 1−70 Å were recorded by the Geostationary Operational Environmental Satellite (GOES) and Extreme Ultraviolet Variability Experiment, respectively; the light curves in Hα and EUV 211 Å were integrated over a small local region, which were measured by the 1 m New Vacuum Solar Telescope and the Atmospheric Imaging Assembly (AIA), respectively. The preflare-VLP is identified as the repeat and quasi-periodic pulses in light curves during preflare phase. The quasi-periodicity can be determined from the Fourier power spectrum with Markov chain Monte Carlo-based Bayesian. Results. Seven well-developed pulses are found before the onset of an M1.1 circular-ribbon flare. They are firstly seen in the local light curve in Hα emission and then discovered in full-disk SXR fluxes in GOES 1−8 Å and ESP 1−70 Å, as well as the local light curve in AIA 211 Å. These well-developed pulses can be regarded as the preflare-VLP, which might be modulated by LRC-circuit oscillation in the current-carrying plasma loop. The quasi-period is estimated to be ∼9.3 min. Conclusions. We present the first report of a preflare-VLP event in the local Hα line and EUV wavelength, which could be considered a precursor of a solar flare. This finding should therefore prove useful for the prediction of solar flares, especially for powerful flares.


1989 ◽  
Vol 134 ◽  
pp. 112-113
Author(s):  
T.J.-L. Courvoisier ◽  
E. I. Robson ◽  
A. Blecha ◽  
P. Bouchet

The quasar 3C273 has been repeatedly observed at radio, mm, IR, optical, UV and X-ray frequencies since December 1983. A complex pattern of continuum variations has been discovered, which can be used to provide model independent physical parameters, and to constrain different models. The main features revealed by our set of observations are: (i)A flux decrease by 40% in the 2–10 kev flux in 20 days in early 1984 (Courvoisier et al. 1987).(ii)Differences between the X-ray light curves at 0.5 keV and 2–10 keV.(iii)A drop in the mm to mid-IR emission by factors 2–4 in early 1986, while the near infrared flux remained stable (Robson et al. 1986).(iv)A decrease in the ultraviolet intensity of ∼40% in about 6 months in 1987 (Ulrich, Courvoisier and Wamsteker 1988).(v)Rapid variability in the infrared and optical emission on timescales as short as one day in 1988 (Courvoisier et al. 1988 and Robson, Courvoisier and Bouchet this conference).


1968 ◽  
Vol 35 ◽  
pp. 490-509
Author(s):  
R. L. Arnoldy ◽  
S. R. Kane ◽  
J. R. Winckler

More than 70 cases have been observed of energetic solar flare X-ray bursts by large ionization chambers on the OGO satellites in space. The ionization chambers have an energy range between 10 and 50 KeV for X-rays and are also sensitive to solar protons and electrons. A study has been made of the X-ray microwave relationship, and it is found that the total energy released in the form of X-rays between 10 and 50 KeV is approximately proportional to the peak or total energy simultaneously released in the form of microwave emission. For a given burst the rise time, decay time and total duration are similar for the 10–50 KeV X-rays and the 3 to 10 cm radio emission. Roughly exponential decay phases are observed for both emissions with time constants between 1 and 10 min. All 3 or 10 cm radio bursts with peak intensity greater than 80 solar flux units are accompanied by an X-ray burst greater than 3 × 10−7 ergs cm−2 sec−1 peak intensity. The probability of detecting such X-ray events is low unless the radio spectrum extends into the centimetric range of wavelengths. The best correlation between cm-λ and energetic X-rays is observed for the first event in a flare. Subsequent structure and second bursts may not correspond even when the radio emission is rich in the microwave component. The mechanism for the energetic X-rays is shown to be bremsstrahlung probably of fast electrons on a cooler plasma. If the radio emission is assumed to be synchrotron radiation then a relationship is developed between density and magnetic field which meets the observed quantitative results. One finds, on the average, that 5 × 10−54 joules m−2 (CPS)−1 of microwave energy at the Earth are required per electron at the Sun to provide the radio emission for the various events.A strong correlation between interplanetary solar flare electrons observed by satellite and X-ray bursts is shown to exist. This correlation is weak for solar proton events. One may infer a strong propagation asymmetry for solar flare electrons along the spiral interplanetary magnetic field.


2020 ◽  
Vol 492 (3) ◽  
pp. 4216-4234 ◽  
Author(s):  
Krista Lynne Smith ◽  
Richard F Mushotzky ◽  
Michael Koss ◽  
Benny Trakhtenbrot ◽  
Claudio Ricci ◽  
...  

ABSTRACT We have conducted 22 GHz radio imaging at 1 arcsec resolution of 100 low-redshift AGN selected at 14–195 keV by the Swift-BAT. We find a radio core detection fraction of 96 per cent, much higher than lower frequency radio surveys. Of the 96 radio-detected AGN, 55 have compact morphologies, 30 have morphologies consistent with nuclear star formation, and 11 have sub-kpc to kpc-scale jets. We find that the total radio power does not distinguish between nuclear star formation and jets as the origin of the radio emission. For 87 objects, we use optical spectroscopy to test whether AGN physical parameters are distinct between radio morphological types. We find that X-ray luminosities tend to be higher if the 22 GHz morphology is jet-like, but find no significant difference in other physical parameters. We find that the relationship between the X-ray and core radio luminosities is consistent with the LR/LX ∼ 10−5 of coronally active stars. We further find that the canonical fundamental planes of black hole activity systematically overpredict our radio luminosities, particularly for objects with star formation morphologies.


1972 ◽  
Vol 14 ◽  
pp. 827-842 ◽  
Author(s):  
L. D. De Feiter

AbstractRecent observations of the energetic particles produced in solar flares indicate that the production of electrons, with energies up to about 100 keV, is a fairly common feature of small flares. In those flares the acceleration of protons and other nuclei does not extend beyond about 1 MeV.The X-ray emission often exhibits two distinct components of which the first one is produced by non-thermal, the second by thermal electrons through bremsstrahlung collisions with the ambient ions. Along with these X rays, radio emission, in the microwave region, is observed. This radio emission is usually interpreted as due to gyrosynchrotron radiation from the same electrons.In this review a discussion is presented of the processes occurring in solar flares with special reference to the acceleration and radiation processes.


1989 ◽  
Vol 104 (2) ◽  
pp. 203-206
Author(s):  
Dominic M. Zarro ◽  
Richard C. Canfield

AbstractUsing coordinated X-ray and Hα observations of five solar flares, we investigate the dynamics of chromospheric condensations formed during chromospheric evaporation. We show that the peak downflow velocity of condensations predicted by simple hydrodynamic compression of the chromosphere is in good agreement with empirical downflow velocities implied by impulsive phase Hα redwing Doppler shifts. This agreement indicates that the Hα wing redshift provides a useful diagnostic of the pressure excess in the evaporating region and, hence, the energy flux driving chromospheric evaporation.


Sign in / Sign up

Export Citation Format

Share Document