scholarly journals Abundance Estimates in Carbon Star Envelopes

2018 ◽  
Vol 14 (S343) ◽  
pp. 460-461
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo

AbstractThe synthesis of dust grains mostly takes place in the circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars. What are the precursor seeds of condensation nuclei and how do these particles evolve toward the micrometer sized grains that populate the interstellar medium? These are key questions of the NANOCOSMOS project. In this study, we carried out an observational study to constrain what the main gas-phase precursors of dust in C-rich AGB stars are.

2018 ◽  
Vol 611 ◽  
pp. A29 ◽  
Author(s):  
S. Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo ◽  
L. Velilla Prieto ◽  
J. R. Goicoechea ◽  
...  

Context. Silicon carbide dust is ubiquitous in circumstellar envelopes around C-rich asymptotic giant branch (AGB) stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. The most obvious candidates among the molecules containing an Si–C bond detected in C-rich AGB stars are SiC2, SiC, and Si2C. To date, the ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216.Aim. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars, and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars.Methods. We carried out sensitive observations with the IRAM 30 m telescope of a sample of 25 C-rich AGB stars to search for emission lines of SiC2, SiC, and Si2C in the λ 2 mm band. We performed non-LTE excitation and radiative transfer calculations based on the LVG method to model the observed lines of SiC2 and to derive SiC2 fractional abundances in the observed envelopes.Results. We detect SiC2 in most of the sources, SiC in about half of them, and do not detect Si2C in any source except IRC +10216. Most of these detections are reported for the first time in this work. We find a positive correlation between the SiC and SiC2 line emission, which suggests that both species are chemically linked; the SiC radical is probably the photodissociation product of SiC2 in the external layer of the envelope. We find a clear trend where the denser the envelope, the less abundant SiC2 is. The observed trend is interpreted as evidence of efficient incorporation of SiC2 onto dust grains, a process that is favored at high densities owing to the higher rate at which collisions between particles take place.Conclusions. The observed behavior of a decline in the SiC2 abundance with increasing density strongly suggests that SiC2 is an important gas-phase precursor of SiC dust in envelopes around carbon stars.


2017 ◽  
Vol 13 (S332) ◽  
pp. 261-269
Author(s):  
Sarah Massalkhi ◽  
M. Agúndez ◽  
J. Cernicharo ◽  
J. P. Fonfría ◽  
M. Santander-García

AbstractSilicon carbide dust grains are ubiquitous in circumstellar envelopes around C-rich AGB stars. However, the main gas-phase precursors leading to the formation of SiC dust have not yet been identified. To date, only three molecules containing an Si–C bond have been identified to have significant abundances in C-rich AGB stars: SiC2, SiC, and Si2C. The ring molecule SiC2 has been observed in a handful of evolved stars, while SiC and Si2C have only been detected in the C-star envelope IRC +10216. We aim to study how widespread and abundant SiC2, SiC, and Si2C are in envelopes around C-rich AGB stars and whether or not these species play an active role as gas-phase precursors of silicon carbide dust in the ejecta of carbon stars.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 233
Author(s):  
Ambra Nanni ◽  
Sergio Cristallo ◽  
Jacco Th. van Loon ◽  
Martin A. T. Groenewegen

Background: Most of the stars in the Universe will end their evolution by losing their envelope during the thermally pulsing asymptotic giant branch (TP-AGB) phase, enriching the interstellar medium of galaxies with heavy elements, partially condensed into dust grains formed in their extended circumstellar envelopes. Among these stars, carbon-rich TP-AGB stars (C-stars) are particularly relevant for the chemical enrichment of galaxies. We here investigated the role of the metallicity in the dust formation process from a theoretical viewpoint. Methods: We coupled an up-to-date description of dust growth and dust-driven wind, which included the time-averaged effect of shocks, with FRUITY stellar evolutionary tracks. We compared our predictions with observations of C-stars in our Galaxy, in the Magellanic Clouds (LMC and SMC) and in the Galactic Halo, characterised by metallicity between solar and 1/10 of solar. Results: Our models explained the variation of the gas and dust content around C-stars derived from the IRS Spitzer spectra. The wind speed of the C-stars at varying metallicity was well reproduced by our description. We predicted the wind speed at metallicity down to 1/10 of solar in a wide range of mass-loss rates.


1996 ◽  
Vol 13 (2) ◽  
pp. 185-186
Author(s):  
Jessica M. Chapman

Radio emission at centimetre and millimetre wavelengths provides a powerful tool for studying the circumstellar envelopes of evolved stars. These include stars on the asymptotic giant branch (AGB), post-AGB stars and a small number of massive M-type supergiant stars. The AGB stars and M-type supergiants are characterised by extremely high mass-loss rates. The mass loss in such an evolved star is driven by radiation pressure acting on grains which form in the outer stellar atmosphere. The grains are accelerated outwards and transfer momentum to the gas through grain–gas collisions. The outflowing dust and gas thus form an expanding circumstellar envelope through which matter flows from the star to the interstellar medium, at a typical velocity of 15 km s−1. For a recent review of circumstellar mass loss see Chapman, Habing & Killeen (1995).


2020 ◽  
Vol 10 (1) ◽  
pp. 7-11
Author(s):  
B. Etmański ◽  
M. Schmidt ◽  
R. Szczerba

The HIFI instrument on board of the Herschel Space Observatory (HSO) has been very successful in detecting molecular lines from the circumstellar envelopes around evolved stars, like massive red supergiants, Asymptotic Giant Branch (AGB) and post-AGB stars, as well as the planetary nebulae. Among others, ammonia have been found in the circumstellar envelopes of C-rich AGB stars in amounts that significantly exceeded the theoretical predictions for C-rich stars. Few scenarios have been proposed to resolve this problem: formation of ammonia behind the shock front and photochemical processes in the inner part of the envelope partly transparent to UV background radiation due to the clumpy structure of the gas and formation of ammonia on dust grains. Careful analysis of observations may help to put the constraints on one or another mechanism of ammonia formation. Here, we present results of the non-LTE radiative transfer modeling of ammonia transitions including the crucial process of radiative pumping via the v2=1 vibrational band (at ∼10 μm) for V Cyg. Only the ground-based ammonia transition NH3 J = 10-00 at 572.5 GHz has been observed by HIFI. Therefore, to determine the abundance of ammonia we estimate the photodissociation radius of NH3 using chemical model of the envelope consistent with the dust grain properties concluded from the spectral energy distribution.


2020 ◽  
Vol 637 ◽  
pp. A59 ◽  
Author(s):  
M. Agúndez ◽  
J. I. Martínez ◽  
P. L. de Andres ◽  
J. Cernicharo ◽  
J. A. Martín-Gago

Chemical equilibrium has proven extremely useful for predicting the chemical composition of AGB atmospheres. Here we use a recently developed code and an updated thermochemical database that includes gaseous and condensed species involving 34 elements to compute the chemical equilibrium composition of AGB atmospheres of M-, S-, and C-type stars. We include for the first time TixCy clusters, with x = 1–4 and y = 1–4, and selected larger clusters ranging up to Ti13C22, for which thermochemical data are obtained from quantum-chemical calculations. Our main aims are to systematically survey the main reservoirs of each element in AGB atmospheres, review the successes and failures of chemical equilibrium by comparing it with the latest observational data, identify potentially detectable molecules that have not yet been observed, and diagnose the most likely gas-phase precursors of dust and determine which clusters might act as building blocks of dust grains. We find that in general, chemical equilibrium reproduces the observed abundances of parent molecules in circumstellar envelopes of AGB stars well. There are, however, severe discrepancies of several orders of magnitude for some parent molecules that are observed to be anomalously overabundant with respect to the predictions of chemical equilibrium. These are HCN, CS, NH3, and SO2 in M-type stars, H2O and NH3 in S-type stars, and the hydrides H2O, NH3, SiH4, and PH3 in C-type stars. Several molecules have not yet been observed in AGB atmospheres but are predicted with non-negligible abundances and are good candidates for detection with observatories such as ALMA. The most interesting ones are SiC5, SiNH, SiCl, PS, HBO, and the metal-containing molecules MgS, CaS, CaOH, CaCl, CaF, ScO, ZrO, VO, FeS, CoH, and NiS. In agreement with previous studies, the first condensates predicted to appear in C-rich atmospheres are found to be carbon, TiC, and SiC, while Al2O3 is the first major condensate expected in O-rich outflows. According to our chemical equilibrium calculations, the gas-phase precursors of carbon dust are probably acetylene, atomic carbon, and/or C3, while for silicon carbide dust, the most likely precursors are the molecules SiC2 and Si2C. In the case of titanium carbide dust, atomic Ti is the major reservoir of this element in the inner regions of AGB atmospheres, and therefore it is probably the main supplier of titanium during the formation of TiC dust. However, chemical equilibrium predicts that large titanium-carbon clusters such as Ti8C12 and Ti13C22 become the major reservoirs of titanium at the expense of atomic Ti in the region where condensation of TiC is expected to occur. This suggests that the assembly of large TixCy clusters might be related to the formation of the first condensation nuclei of TiC. In the case of Al2O3 dust, chemical equilibrium indicates that atomic Al and the carriers of Al-O bonds AlOH, AlO, and Al2O are the most likely gas-phase precursors.


2016 ◽  
Vol 12 (S323) ◽  
pp. 199-206
Author(s):  
Hyosun Kim

AbstractA consensus has grown in the past few decades that binarity is key to understanding the morphological diversities of the circumstellar envelopes (CSEs) surrounding stars in the Asymptotic Giant Branch (AGB) to Planetary Nebula (PN) phase. The possible roles of binaries in their shaping have, however, yet to be confirmed. Meanwhile, recurrent patterns are often found in the CSEs of AGB stars and the outer halos of PNe, providing a fossil record of the mass loss during the AGB phase. In this regard, recent molecular line observations using interferometric facilities have revealed the spatio-kinematics of such patterns. Numerical simulations of binary interactions producing spiral-shells have been extensively developed, revealing new probes for extracting the stellar and orbital properties from these patterns. I review recent theoretical and observational investigations on the circumstellar spiral-shell patterns and discuss their implications in linking binary properties to the asymmetric ejection events in the post-AGB phase.


2020 ◽  
Vol 641 ◽  
pp. A103
Author(s):  
P. Ventura ◽  
F. Dell’Agli ◽  
M. Lugaro ◽  
D. Romano ◽  
M. Tailo ◽  
...  

Context. Stars evolving through the asymptotic giant branch (AGB) phase provide significant feedback to their host system, which is both gas enriched in nuclear-burning products, and dust formed in their winds, which they eject into the interstellar medium. Therefore, AGB stars are an essential ingredient for the chemical evolution of the Milky Way and other galaxies. Aims. We study AGB models with super-solar metallicities to complete our vast database, so far extending from metal-poor to solar-chemical compositions. We provide chemical yields for masses in the range 1−8 M⊙ and metallicities Z = 0.03 and Z = 0.04. We also study dust production in this metallicity domain. Methods. We calculated the evolutionary sequences from the pre-main sequence through the whole AGB phase. We followed the variation of the surface chemical composition to calculate the chemical yields of the various species and model dust formation in the winds to determine the dust production rate and the total dust mass produced by each star during the AGB phase. Results. The physical and chemical evolution of the star is sensitive to the initial mass: M >  3 M⊙ stars experience hot bottom burning, whereas the surface chemistry of the lower mass counterparts is altered only by third dredge-up. The carbon-star phase is reached by 2.5−3.5 M⊙ stars of metallicity Z = 0.03, whereas all the Z = 0.04 stars (except the 2.5 M⊙) remain O-rich for the whole AGB phase. Most of the dust produced by metal-rich AGBs is in the form of silicate particles. The total mass of dust produced increases with the mass of the star, reaching ∼0.012 M⊙ for 8 M⊙ stars.


2003 ◽  
Vol 20 (4) ◽  
pp. 314-323 ◽  
Author(s):  
C. Abia ◽  
I. Domínguez ◽  
R. Gallino ◽  
M. Busso ◽  
O. Straniero ◽  
...  

AbstractRecent advances in the knowledge of the evolutionary status of asymptotic giant branch (AGB) stars and of the nucleosynthesis processes occurring in them are discussed, and used to interpret abundance determinations for s-process elements, lithium and CNO isotopes in several types of AGB stars. We focus our attention mainly on carbon-rich AGB stars. By combining these different constraints we conclude that most carbon stars in the solar neighborhood are of low mass (M≤3 M⊙), their abundances being a consequence of the operation of thermal pulses and the third dredge-up. However, the observed abundances in carbon stars of the R and J types cannot be explained by this standard scenario. These stars may not be on the AGB, but possibly in the core-He burning phases; their envelopes may have been polluted with nuclear ashes of the core-He flash, followed by CNO re-processing enhancing 13C. Observational evidence suggesting the operation of non-standard mixing mechanisms during the AGB phase is also discussed.


2019 ◽  
Vol 624 ◽  
pp. L13 ◽  
Author(s):  
Aleksandra Leśniewska ◽  
Michał Jerzy Michałowski

Context. The mechanism of dust formation in galaxies at high redshift is still unknown. Asymptotic giant branch (AGB) stars and explosions of supernovae (SNe) are possible dust producers, and non-stellar processes may substantially contribute to dust production, for example grain growth in the interstellar medium. Aims. Our aim is to determine the contribution to dust production of AGB stars and SNe in nine galaxies at z ∼ 6−8.3, for which observations of dust have been recently attempted. Methods. In order to determine the origin of the observed dust we have determined dust yields per AGB star and SN required to explain the total amounts of dust in these galaxies. Results. We find that AGB stars were not able to produce the amounts of dust observed in the galaxies in our sample. In order to explain these dust masses, SNe would have to have maximum efficiency and not destroy the dust which they formed. Conclusions. Therefore, the observed amounts of dust in the galaxies in the early universe were formed either by efficient supernovae or by a non-stellar mechanism, for instance the grain growth in the interstellar medium.


Sign in / Sign up

Export Citation Format

Share Document