Fermented liquid feed can reduce E. coli bloom at farrowing and prevent constipation problems during lactation

2003 ◽  
Vol 2003 ◽  
pp. 69-69
Author(s):  
V. Demečková ◽  
C.A. Tsourgiannis ◽  
P.H. Brooks ◽  
A. Campbell

Gastrointestinal infections associated with E. coli represent a serious problem for neonatal pigs. These bacteria are present in the sow’s intestine in large numbers but increase dramatically just prior to farrowing due to stress occasioned by movement and parturition (Maclean and Thomas, 1974). Consequently, just 24 hours after farrowing, E.coli are found in high numbers (over 108/g) in the faeces of piglets. However, at this stage of its life the piglet is not equipped to deal with such a large microbial load and unless immunological assistance is provided, they have very little chance of survival. In pigs, all immunological assistance at birth is concentrated in the mother’s colostrum. Thus elimination, or at least minimizing, all the factors which negatively affect the sow’s ability to produce sufficient amount of milk becomes essential challenge of each efficient swine production. The main aim of this study was to investigate the potential of fermented liquid feed (FLF) to control the pathogen load within the piglet’s environment by reducing the rapid E. coli multiplication in sows associated with farrowing. The possible laxative effect of FLF, in order to prevent constipation and the problems it causes during farrowing, was also examined.

2001 ◽  
Vol 8 (1) ◽  
pp. 143-149 ◽  
Author(s):  
Ulla Niewerth ◽  
Andreas Frey ◽  
Thomas Voss ◽  
Chantal Le Bouguénec ◽  
Georg Baljer ◽  
...  

ABSTRACT Pathogenic Escherichia coli strains are known to cause edema disease (ED) and postweaning diarrhea (PWD) in piglets. Although the exact mechanisms of pathogenicity that lead to ED-PWD remain to be elucidated, E. coli-borne Shiga-like toxin and adhesion-mediating virulence factors such as F18 adhesin or F4 fimbriae are believed to play a central role in ED-PWD. In light of these observations we investigated whether another E. coliadhesin, the plasmid-encoded AIDA (adhesin involved in diffuse adherence) might also be present in ED-PWD-causing E. coli isolates. For rapid screening for the AIDA system in large numbers of isolates, a multiplex PCR method along with a duplex Western blot procedure was developed. When screening 104 strains obtained from pigs with or without ED-PWD, we observed a high prevalence of the AIDA operon in porcine E. coli isolates, with over 25% of all strains being AIDA positive, and we could demonstrate a significant association of the intact AIDA gene (orfB) with ED-PWD, while defects in orfB were associated with the absence of disease. Although our data hint toward a contribution of AIDA to ED-PWD, further studies will be necessary since the presence of the AIDA genes was also associated with the presence of the Shiga-like toxin and F18 adhesin genes, two reported virulence factors for ED-PWD.


2020 ◽  
Author(s):  
Juliet Kyayesimira ◽  
Wangalwa Rapheal ◽  
Grace Kagoro Rugunda ◽  
Lejju Julius Bunny ◽  
Morgan Andama ◽  
...  

Abstract Background If hygiene practices along the beef processing nodes at small and medium enterprise (SME) slaughter houses and butcheries are not observed, they may pose a health risk due to microbial contamination. In SME slaughterhouses and butcheries, the risk may be higher due to transmission of foodborne pathogens. This study determined the hygienic practices and microbial quality risk among meat handlers (MH) in SME slaughterhouses and butcheries. Methods Assessment of microbiological quality of beef was carried out at slaughter houses and butcher shops in the districts of Western, Central and Eastern regions of Uganda. A cross sectional study was conducted from June 2017 to January 2018 using observation checklists to record unhygienic practices among the various actors. Microbial load at slaughter and butchery was determined from a total of 317 swab samples collected from carcass, tools, protective clothing and hands of meat handlers. The microbiological quality of beef was evaluated using standard microbiological methods. The samples were inoculated into differential and selective media. Results Butcheries had the highest microbial load on beef carcass ranging from 4.76 log 10 cfu/cm 2 to 7.90 log 10 cfu/cm 2 Total Viable Counts (TVC) while Total Coliform Counts (TCC) ranged from 1.42 log 10 cfu/cm 2 to 3.05 log 10 cfu/cm 2 , E. coli ranged from 0.68 log 10 cfu/cm 2 to 1.06 log 10 cfu/cm 2 and Staphylococcus aureus ranged from 3.25 log 10 cfu/cm 2 to 4.84 log 10 cfu/cm 2 . Salmonella was absent in all the samples analysed. Results of overall microbial quality of beef in Uganda indicated that only TCC (1.60±0.26 log 10 cfu/cm 2 ) of the beef carcass samples at slaughter houses was not significantly above the safe level (p = 0.693). Overall microbial load (TVC, TCC, E. coli and S. aureus ) at butcheries were significantly (p < 0.05) above the safe level. Butcheries of Mbale district had the highest percentage (70%) of beef carcass samples above the TCC safe levels whereas butcheries of Mbarara district had the highest percentage (40%) of beef carcass samples above the E. coli safe levels. TVC from hands and clothes at butchery across the three study districts varied significantly (p=0.007) with the highest counts (7.23 log 10 cfu/cm 2 ) recorded from personnel clothes and lowest (5.46 log 10 cfu/cm 2 ) recorded from hands. On the other hand, swab samples picked from chopping board and working table at the butchery did not show significant variation in TVC, TCC, E. coli and S. aureus microbial loads across the three study districts. Conclusion Hygienic handling of carcasses after slaughter is critical in preventing contamination and ensuring meat safety in informal meat trading sectors in Uganda. Handling practices of beef at Ugandan slaughterhouses and butcheries are not hygienic hence not up to standard and they contribute to microbial contamination of beef posing a risk to consumers. The distribution stage is the most critical period, during which the quality of meat can easily be compromised.


2013 ◽  
Author(s):  
Gabriel Desmarais ◽  
Ann Letellier ◽  
John Morris Fairbrother ◽  
Philippe Fravalo

2008 ◽  
Vol 5 (2) ◽  
pp. 237-242
Author(s):  
Baghdad Science Journal

A number of juices, jams, canned foods and frozen fishes available in local markets were inspected with respect to microbial contamination. We have determined the total viable bacterial cell counts in these samples and the number of g(-) lactose fermentors as a bacterial indicator of food spoilage. The results indicated that most of the food items inspected, were contaminated with large numbers of different species of g(-) ,g(+), yeast and fungi and some were contained more than the maximum permissible number of pathogenic g(-) enteric E-coli, which render these food items unsafe for human consumption.


1999 ◽  
Vol 67 (9) ◽  
pp. 4499-4509 ◽  
Author(s):  
Jerome Boudeau ◽  
Anne-Lise Glasser ◽  
Estelle Masseret ◽  
Bernard Joly ◽  
Arlette Darfeuille-Michaud

ABSTRACT Crohn’s disease (CD) is an inflammatory bowel disease in whichEscherichia coli strains have been suspected of being involved. We demonstrated previously that ileal lesions of CD are colonized by E. coli strains able to adhere to intestinal Caco-2 cells but devoid of the virulence genes so far described in the pathogenic E. coli strains involved in gastrointestinal infections. In the present study we compared the invasive ability of one of these strains isolated from an ileal biopsy of a patient with CD, strain LF82, with that of reference enteroinvasive (EIEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enteraggregative (EAggEC), enterohemorrhagic (EHEC), and diffusely adhering (DAEC)E. coli strains. Gentamicin protection assays showed thatE. coli LF82 was able to efficiently invade HEp-2 cells. Its invasive level was not significantly different from that of EIEC and EPEC strains (P > 0.5) but significantly higher than that of ETEC (P < 0.03), EHEC (P < 0.005), EAggEC (P < 0.004) and DAEC (P < 0.02) strains. Strain LF82 also demonstrated efficient ability to invade intestinal epithelial cultured Caco-2, Intestine-407, and HCT-8 cells. Electron microscopy examination of infected HEp-2 cells revealed the presence of numerous intracellular bacteria located in vacuoles or free in the host cell cytoplasm. In addition, the interaction of strain LF82 with epithelial cells was associated with the elongation of microvillar extensions that extruded from the host cell membranes and engulfed the bacteria. This internalization mechanism strongly resembles Salmonella- orShigella-induced macropinocytosis. The use of cytochalasin D and colchicine showed that the uptake of strain LF82 by HEp-2 cells was mediated by both an actin microfilament-dependent mechanism and microtubule involvement. In addition, strain LF82 survived for at least 24 h in HEp-2 and Intestine-407 cells and efficiently replicated intracellularly in HEp-2 cells. PCR and hybridization experiments did not reveal the presence of any of the genetic determinants encoding EIEC, EPEC, or ETEC proteins involved in bacterial invasion. Thus, these findings show that LF82, which colonized the ileal mucosa of a patient with CD, is a true invasive E. coli strain and suggest the existence of a new potentially pathogenic group of E. coli, which we propose be designated adherent-invasive E. coli.


2017 ◽  
Vol 80 (4) ◽  
pp. 582-589 ◽  
Author(s):  
Kira L. Newman ◽  
Faith E. Bartz ◽  
Lynette Johnston ◽  
Christine L. Moe ◽  
Lee-Ann Jaykus ◽  
...  

ABSTRACT Several produce-associated outbreaks have been linked to the packing facility. Equipment surfaces may be an important source of contamination. The goal was to assess whether the microbial load of packing facility surfaces is associated with the microbial load of produce. From November 2000 to December 2003, 487 matched produce (14 types) and equipment surfaces (six production steps) were sampled from eight packing facilities in the United States near the border with Mexico and enumerated for aerobic plate counts (APC), Escherichia coli, Enterococcus, and coliforms. Bivariate correlations were assessed by Spearman's ρ, and adjusted associations were assessed by multilevel mixed linear regression models. In general, the microbial load both increased and decreased on produce (0.2 to 1.0 log CFU/g) and equipment surfaces (0.5 to 3.0 log CFU/cm2) across production steps. Equipment surface and produce microbial loads were correlated, but correlations varied from none to high depending on the equipment surface. For example, significant correlations (P &lt; 0.01) included APC (ρ = 0.386) and Enterococcus (ρ = 0.562) with the harvest bin, E. coli (ρ = 0.372) and Enterococcus (ρ = 0.355) with the merry-go-round, Enterococcus (ρ = 0.679) with rinse cycle equipment, APC (ρ = 0.542) with the conveyer belt, and for all indicators with the packing box (ρ = 0.310 to 0.657). After controlling for crop type, sample replicate group, and sample location, there were significant positive associations between the log concentration of Enterococcus on produce and the harvest bin (β = 0.259, P &lt; 0.01) and the rinse cycle (β = 0.010, P = 0.01), and between the log concentration of all indicators on produce and the packing box (β = 0.155 to 0.500, all P &lt; 0.01). These statistically significant associations between microbial loads on packing facility surfaces and fresh produce confirm the importance of packing facility sanitation to protect produce quality and safety.


2013 ◽  
Vol 2 (5) ◽  
pp. 77 ◽  
Author(s):  
C. O. Gill ◽  
X. Yang ◽  
B. Uttaro ◽  
M. Badoni ◽  
T. Liu

<p>Beef steaks between 1 cm and 3 cm-thick were inoculated with <em>Escherichia coli </em>O157:H7 and/or temperature histories were collected at steak centres, at points initially below the central plane, and/or at points 1 cm or 2 cm from steak edges. The steaks were turned over once during grilling when temperatures at the centres reached 30°C or 50°C, or at specified times once, twice or several times during cooking to specified temperatures between 60and 71°C. When steaks were turned over at centre temperature of 30 or 50°C, some points in some steaks did not reach the temperatures specified for steak centres. When steaks turned over at 50°C were cooked to 60, 63 or 65°C, <em>E. coli </em>O157:H7 inoculated at ? 5 log cfu at each point survived at some points in some steaks at numbers ?3 log cfu. When steaks were turned over once during cooking to 71°C, <em>E. coli </em>O157:H7 survived at some points in some steaks turned over after ? 8 min. When steaks were turned over frequently, or twice at appropriate times during cooking to 63°C, no <em>E. coli </em>O157:H7 were recovered from any inoculated steak. Thus, cooking steaks to 71°C may sometimes have only relatively small effects on <em>E. coli </em>O157:H7 in steaks turned over once. However, turning steaks over twice or more during cooking to 63°C can ensure inactivation of large numbers of <em>E. coli</em> O157:H7 at all points in mechanically tenderized steaks.</p>


2019 ◽  
Vol 28 (1) ◽  
pp. 168-171
Author(s):  
Michele Capasso ◽  
Maria Paola Maurelli ◽  
Davide Ianniello ◽  
Leucio Camara Alves ◽  
Alessandra Amadesi ◽  
...  

Abstract Animals reared in restricted environments are highly susceptible to gastrointestinal infection by helminths and protozoa and therefore zoos are characterized as being parasite-rich environments. Successful implementation of control programs of these parasites in zoo environment depends upon precise and rapid diagnosing of gastrointestinal infections. The aim of this study was to demonstrate the role of the Mini-FLOTAC technique in combination with Fill-FLOTAC for rapidly diagnosing parasitic infections in zoo mammals. Fecal samples were collected from 70 animals in four different zoos located in central and southern Italy. All the samples were analyzed using Mini-FLOTAC in combination with Fill-FLOTAC. Out of the 70 pooled samples examined, 80% (24/30) were positive for at least one parasite. Among the gastrointestinal nematodes, Strongyles were the most frequent (40%), followed by Trichuris spp. (23.3%), Parascaris spp. (13.3%) and Capillaria spp. (3.3%). Among the protozoa, Blastocystis spp., Giardia spp. and Eimeria spp. were detected in 6.6%, 3.3% and 3.3%, respectively. These results show that Mini-FLOTAC in combination with Fill-FLOTAC can be used, not only for rapidly diagnosing parasitic infections in zoo mammals, but also for monitoring control programs in which large numbers of fecal samples need to be examined rapidly and reliably.


2000 ◽  
Vol 68 (1) ◽  
pp. 420-423 ◽  
Author(s):  
Tsute Chen ◽  
Hong Dong ◽  
Yixin P. Tang ◽  
Mary M. Dallas ◽  
Michael H. Malamy ◽  
...  

ABSTRACT Porphyromonas gingivalis is a gram-negative, black-pigmented, oral anaerobe strongly associated with adult periodontitis. Previous transposon mutagenesis studies with this organism were based on the Bacteroides transposon Tn4351. Characterization of Tn4351-disrupted genes by cloning has not been an efficient way to analyze large numbers of mutants and is further complicated by the high rate of cointegration of the suicide delivery vector containing Tn4351. In this study, we mutagenized P. gingivalis with a modified version of the Bacteroides fragilis transposon Tn4400. Plasmid pYT646B carrying the transposon was mobilized fromEscherichia coli to P. gingivalis ATCC 33277 by conjugation. Both normal and inverse transposition frequencies were similar (3 × 10−8). However, the inverse transposon (Tn4400′) contains a pBR322 replicon and a β-lactamase gene; thus, the cloning of disrupted genomic DNAs from inverse transposition mutants was easily accomplished after ligation of genomic fragments and transformation into E. coli. Thousands of transconjugants could be obtained in a single mating experiment, and inverse transposition was random as demonstrated by Southern hybridization. By this procedure the disrupted genes from P. gingivalis pleiotropic mutants were quickly cloned, sequenced, and identified.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 184-184
Author(s):  
Bernat Canal ◽  
Luis Mesas ◽  
Cinta Sol ◽  
Monica Puyalto ◽  
Ana Carvajal ◽  
...  

Abstract Essential oils (EOs) have different mechanisms, most of them targeting the bacterial wall. This fact can explain differences in the effectivity of EOs between Gram-positive and Gram-negative bacteria. Therefore, combining certain EOs can broaden their individual spectrum of efficacy due to potential synergistic effects. This trial aimed to test the in vitro antibacterial activity of an EO combination (oregano and clove oils) against a collection of relevant bacterial pathogens in swine production. The Gram-negative bacterial species chosen were Salmonella enterica ssp. enterica, Escherichia coli and Brachyspira hyodysenteriae and the Gram-positive bacterial species were Clostridium perfringens and Streptococcus suis. In addition, Lactobacillus fermentum was included to compare the susceptibility between this beneficial intestinal bacteria and the pathogens tested. The broth microdilution method at pH 6 and the subculturing from wells without bacterial growth were used to determine the minimum concentration of active principle necessary to inhibit (MIC) or kill (MBC) the 50% and 90% (MIC50/90/MBC50/90) of the population of every bacteria. The results showed that the lowest MIC50/90 were obtained for B. hyodysenteriae (37.5/75 ppm) while for S. enterica ssp. enterica (150/300 ppm), C. perfringens (150/150 ppm), E. coli (300/300 ppm) and S. suis (150/300 ppm) results were similar. Regarding the MBC50/90; B. hyodysenteriae (18.8/75 ppm) was the most susceptible pathogen, again, compared to S. enterica ssp. enterica (300/300 ppm), C. perfringens (150/150 ppm), E. coli (300/300 ppm) and S. suis (150/300 ppm). In contrast, the highest bacteriostatic/bactericidal concentrations were obtained against L. fermentum (MIC50/90 600/1,200 ppm and MBC50/90 600/2,400 ppm). These results suggest that the bacterial category (Gram-positive or Gram-negative) did not have an influence on the MIC and MBC. It can also be concluded that B. hyodysenteriae is the most susceptible enteropathogen to this EO blend. However, the in vivo effect of this combination of EOs must be further studied.


Sign in / Sign up

Export Citation Format

Share Document